DETAILS OF PROPONENT AND EXPERT(S)

<table>
<thead>
<tr>
<th>Proponent</th>
<th>KANHA JI ROLLING MILL LIMITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>P.O BOX 551-00242, KITENGELA</td>
</tr>
<tr>
<td>Tel</td>
<td>0722260669</td>
</tr>
<tr>
<td>KRA PIN No</td>
<td>P051748983G</td>
</tr>
<tr>
<td>Fax</td>
<td>NA</td>
</tr>
<tr>
<td>E-mail</td>
<td>Lamconsult.eia@gmail.com</td>
</tr>
<tr>
<td>Contact Person</td>
<td>HAMED JOHN (+254 722 111 575)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead Expert(s)</th>
<th>Mr. PARASHINA JOHN LAMPAT & Dr. AGGREY OCHIENG’ ADIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA Reg. No.</td>
<td>7554 & 2074</td>
</tr>
<tr>
<td>Contacts</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>P.O. Box 52089-00100, Nairobi</td>
</tr>
<tr>
<td>Tel</td>
<td>+254 722111575, +254725793894</td>
</tr>
<tr>
<td>Fax</td>
<td>NA</td>
</tr>
<tr>
<td>E-mail</td>
<td>lparashina@gmail.com adimo1@gmail.com</td>
</tr>
</tbody>
</table>
CERTIFICATION

We, the undersigned, hereby approve that all information given here in this report is accurate and true to the best of our understanding, knowledge and belief.

The preparation of this Environmental Impact Assessment study was commissioned by the proponent in fulfillment of requirements of Section 58 of the Environment Management and Coordination Amendment Act, CAP 387, Regulation 10 of the Environmental (Impact Assessment and Audit) 2003 amended 2016, legal notice No. 31 of 2019.

Signature .. Date ..

KANHA JI ROLLING MILL LIMITED

Proponent

Signature .. Date ..

Mr. PARASHINA JOHN LAMPAT, M.A, BSc (Hons).

Registered and Practicing EIA/EA Lead Expert

NEMA Reg. No. 7554

Signature .. Date ..

Dr. AGGREY OCHIENG’ ADIMO (PhD).

Registered and Practicing EIA/EA Lead Expert

NEMA Reg. No. 2074
ACKNOWLEDGEMENT

First and foremost, we would like to thank Kanha Ji Rolling Mill Limited for giving the Consultants the opportunity to conduct this Environmental and Social Impact Assessment study for the proposed Steel Processing Plant project.

We further thank every person who immensely assisted in logistics, provision of data, and providing a good environment for the impact assessment exercise.

The contribution, either direct or indirect, of all the stakeholders who took time out of their busy schedules to support the Environment impact assessors is highly appreciated. We are also indebted to the neighbours and other stakeholders who contributed their experiences during the exercise. We thank them together with the many others who have not been mentioned here.

Disclaimer

This Environmental Impact Assessment Study contains 143 pages and the study has been carried out to the best of our knowledge and ability and within the terms of contract with the client and is limited to the exercise of reasonable care. This report is not intended to relieve the Establishment from their contractual obligations. This report reflects our findings at the time and place of study and is issued under the General Conditions of Service.
EXECUTIVE SUMMARY

Proposed Development of a Steel Processing Plant, on Plot L.R. No. Kajiado/Kaputiei-North/108320 off Namanga Road, in Kisaju area, Kajiado East sub-county, Kajiado County.

Overview and Background
This study was commissioned by Kanha Ji Rolling Mill Limited in accordance with Section 58 of the Environmental Management and Coordination Amendment Act (2015), CAP 387, and Regulation 10 of the Environmental (Impact Assessment Audit) Regulations 2003 amended in 2016, legal notice No 31 of 2019. Other national policies and legislations relevant to the proposed project were reviewed. The purpose of this study is to establish the potential environmental impacts as a result of the said construction and operation activities of the proposed development and thereafter prescribe possible mitigation measures. The report also provides baseline information on the project that may be used in decision-making during the project’s evaluation process and is also expected to form the baseline for future environmental audits and monitoring.

Project location, objective and scope
The primary objective of the proposed project is to develop a Steel Processing Plant on Plot L.R. No. Kajiado/Kaputiei-North/108320, situated in Kisaju area, off Namanga road, Kajiado East Sub-County. Presently, the project site is not developed and the proposed development consist of a Steel Processing Plant with associated support facilities and services. The proposed plant will use the induction furnace melting and heating system. The project site is positioned within approximately 2.02 hectares and is regular in shape with a relatively flat terrain. However, the proposed development will not occupy the entire parcel of land rather it will comply with local planning and zoning regulations.

Project cost and components.
The proposed development project is estimated to cost Ksh 25,000,000. The main design components of the project include, but not limited to the following:

- A Steel Processing Plant.
- Staff residence
- Development of external works/services – driveway, car parking lots, water supply, septic tank, electricity supply etc.
- Site landscaping.

Process Inputs and products.
Alloy steels contain metallic elements other than iron, such as chromium (present at 14% in stainless steel), nickel, vanadium, molybdenum, manganese, cobalt, and tungsten. The proposed plant will use the induction furnace melting and heating system. Some of the raw materials that will be used in the plant will be billets; fuel that will be used will be Industrial Diesel Oil and furnace oil, water will be the main coolant. Expected products will be hot rolled steel angles, zed section, tee section, flat bars.
Plant's Expected Waste
Some of the expected waste will include slags, dusts, mill scales, steel scrap, damaged furnace lining insulating materials, used oil, used grease and effluent from sanitary facilities and waste water.

For this development to take place, an Environmental and Social Impact Assessment (ESIA) study is required. This is a requirement of the section 58 of the Environmental Management and Coordination Amendment Act of 2015 and Regulation 10 of the Environmental (Impact Assessment and Audit) Regulations 2016, legal notice No. 31 of 2019. These statutes require that all new developments are to undertake an Environmental and Social Impact Assessment study before project commencement. An ESIA process ensures that the environmental implications of the various proposed development are taken into account prior to the commencement of the project. It entails aspects that include: analysis of the potential impacts on the environment, recording the impacts, undertaking public consultation exercise, evaluating alternatives to the proposed project, taking into consideration the comments and informing the public about the decision beforehand. This ESIA has been carried out to determine the current environmental status of the site and to assess the impacts that are likely to arise from the implementation of the project. From the study, it has been established that some of the basic approvals for the project have been obtained from relevant authorities.

Grievance Redress Mechanism
A Grievance Redress Mechanism (GRM) is an instrument through which dispute resolution is sought and provided. It involves the receipt and processing of complaints from individuals or groups negatively affected by activities of a particular project. It is a critical component of effective implementation of the environmental and social management plan (ESMP). The purpose of GRM is to provide a forum to the internal and external stakeholders to voice their concerns, queries and issues with the project. Such a mechanism would provide the stakeholders with one project personnel or one channel through which their queries will be channeled and will ensure timely responses to each query. This will allow for trust to be built amongst the stakeholders and prevent the culmination of small issues into major community unrest. The GRM will be accessible and understandable for all stakeholders in the project and for the entire project life. The GRM will be communicated to all relevant stakeholders and will also be applicable for any contractor that will occupy and/or use land during the construction and operations phase.

Project Location.
The project will be sited on the piece of land on plot L.R. No. KAJIADO/KAPUTIEI-NORTH/108320 owned by the proponent Kanha Ji Rolling Mill Ltd and the proposed construction and installation of steel processing plant is in tandem with other already existing developments in the areas. The site is located off the Namanga road accessed through an access road on the front side of the site within Kisaju Area, Kajiado East Sub-County, Kajiado County. Other factories and industries neighbouring the proposd project site includes Masai steel mills and Capita bolders and pavers.
BACKGROUND ON STEEL PROCESSING

Steel is everywhere in our lives and is at the heart of a sustainable future. The steel industry is an integral part of the global circular economy. The circular economy is a move from linear business models, in which products are manufactured from raw materials and then discarded at the end of their useful lives, to circular business models where intelligent design leads to products or their parts being repaired, reused, returned and recycled. In the manufacture of steel, the term ‘primary production’ generally refers to the manufacture of iron (hot metal) from iron ore in a blast furnace (BF), which is subsequently processed in the basic oxygen furnace (BOF) to make steel.

‘Secondary production’ refers to the ‘recycling’ route and is typically the electric arc furnace (EAF) process, which converts scrap into new steel by re-melting old steel. However, primary steel production is not unique to the BOF route, and similarly, secondary steel production is not unique to the EAF. It is common practice to use 10–30% scrap as iron input in the BOF route. Primary steel production also occurs in the EAF route, when pre-reduced iron is used as a feedstock to the EAF process.

Steel is 100% recyclable and scrap is converted to the same (or higher or lower) grade steel depending upon the metallurgy and processing of the required product. Some recycled products such as rebar require minimal processing, whilst the higher value engineering steels require more metallurgical and process controls to meet tighter specifications. The final economic value of the product is not determined by recycled content, and there are many examples of high value products that contain large amounts of recycled steel. Some steel products are principally sourced via the primary route mainly because the steel specifications require low residual elements and this can be achieved most cost-effectively using more primary material. In most cases, scrap with a low amount of residual elements commands a higher market price owing to the ease of processing through the recycling routes. The main sources of steel in Kenya are recycled scrap and imports. Steel is usually imported in the form of billets. Recycling of steel scrap is preferred as it uses 60% less energy to produce steel from scrap than from iron ore. The government of Kenya banned the exportation of scrap steel in its 2009/2010 financial year budget. This is expected to spur local recycling of steel.

Summary of Steel Rolling

Rolling is a deformation process in which work thickness is reduced by compressive forces exerted by two opposing rolls.

Illustration 1: An illustration of rolling process
The rotating rolls perform two main functions:

- Pull the work into the gap between them by friction between work-part and rolls
- Simultaneously squeeze the work to reduce cross section.

Types of Rolling

Rolling by geometry of work

- Flat rolling-used to reduce thickness of a rectangular cross-section
- Shape rolling-a square cross-section is formed into a shape such as an I-beam

Rolling by temperature of work

- Hot Rolling- This is the most common due to the large amount of deformation Required
- Cold rolling- This one produces finished sheet and plate stock

Hot Rolling

Hot rolling is a metal working process that occurs above the re-crystallization temperature of the material. After the grains deform during processing, they re-crystallize, which maintains an equated microstructure and prevents the metal from work hardening. The starting material is usually large pieces of metal, like semi-finished casting products, such as slabs, blooms, and billets. If these products came from a continuous casting operation the products are usually fed directly into the rolling mills at the proper temperature. In smaller operations, the material starts at room temperature and must be heated. This is done in a gas- or oil-fired soaking pit for larger work-pieces; for smaller work-pieces, induction heating is used. As the material is worked, the temperature must be monitored to make sure it remains above the recrystallization temperature. To maintain a safety factor a finishing temperature is defined above the recrystallization temperature; this is usually 50 to 100 °C (90 to 180 °F) above the recrystallization temperature. If the temperature does drop below this temperature the material must be re-heated before more hot-rolling.

Economic Importance of Steel.

Globally, steel consumption has been steadily increasing over time. World iron and steel production has continued to show large increase since 2002, due to rapidly increasing steel demand in China, India and other developing countries. Kenya has large quantities of iron and steel that could be exploited for commercial ventures. Large deposits are found in Kitui, Taita Taveta, Homa Bay and Kakamega. In Kenya, steel is mainly used in the construction industry and in the manufacture of wire products such as barbed wire, chain link and nails. Steel is a major engineering material due to its availability, relatively low cost and high strength. It may be used in the `as cast' form or it may be further processed by hot or cold working to become wrought steel.

Economic Importance of Construction Industry.

The construction industry plays a very important role in the economy. Indeed, construction index is one of the indicators of overall economic performance. Construction plays an important role in the economy, in that it is an intensive activity that utilizes both skilled and unskilled labour.
It also makes use of locally available materials both from the formal industry (cement, timber) and informal/Jua Kali industry (fabrications). For that matter it creates a lot of forward and backward linkages. It also means that money spent in a construction project circulates in the local economy. Further, the proponent will contribute to the county government revenue base through payment of rates and taxes.

ESIA Study Team

The table below presents key specialist who will be involved in the ESIA study. Registration certificate and practicing license of the experts is attached in appendix as an annex.

<table>
<thead>
<tr>
<th>Name</th>
<th>Specialization</th>
<th>Education</th>
<th>Registration with professional bodies</th>
</tr>
</thead>
</table>
| John Lampat Parashina (Lead Expert) | Environmental Policy Specialist | Masters of Arts in Environmental Policy (Climate Change Resilience for Pastoral Communities in Kenyan Rangelands), University of Nairobi, Kenya, 2019. | NEMA Lead Expert
Environment Institute of Kenya |
| Dr. Aggrey Ochieng Adimo (Lead Expert) | Environmental Specialist | PhD Degree in Landscape Planning and Conservation (Ecosystem and Community Resilience building to Climate Change), Jomo Kenyatta University Agriculture and Technology Nairobi, Kenya, 2013.
MSc in Landscape Ecology - Plants and Green Space Planning (Urban green space for resilience), Zhejiang University, PR China, 2005.
BSc. Horticulture Egerton University 1996. | NEMA Lead Expert
Environment Institute of Kenya |
| Mrs. Diana Chemutai Korir | Sociologist | Bachelor of Arts in Sociology with Information Technology.
Maseno University | |
| Peter Kasaine Moriata | EIA Field Assistant | Diploma in Social Works and Community Development.
Mount Kenya University | |
A summary of key findings of the study

The following baseline information was derived from the assessment of the proposed project. The assessment identified some potential adverse impacts of the project on the physical and socio-economic environment. The impacts that were further investigated and analyzed were:

Positive:
- Increased income to the proponent
- Improved aesthetics
- Increased tax revenue to county and national government
- Increase in foreign exchange earnings through exports
- Creation of employment opportunities and on-job training to locals
- Increased support for development of local community through company CSR programme
- Improvement of local economic
- Optimal use of land area
- Close proximity of Steel processing plant
- Increased access to Steel products
- Creation of market for goods and services
- Improved security

Negative:
Various negative impacts are foreseen in the lifecycle of the project and include:
- Generation of dust and air pollution during construction
- Possible accidents amongst workers
- Solid and liquid Waste generation and its disposal or management
- Additional strain to the available existing natural resources within the area and other amenities
- Noise generation and vibrations that may increase ambient noise levels
- Increase in soil erosion and change in soil structure resulting from excavation
- Increase in storm water runoff due to increase in paved areas
- Possible accidents to passersby
- Fire outbreaks
- Increased traffic along the main road

Some other potential impacts are short term and of low significance. These will be ameliorated through proposed mitigation measures which includes:
- Ensuring construction work is undertaken during the day
- Erection of a temporary barrier of iron sheets to condone the area from unauthorized trespassers.
- Collection and appropriate disposal of solid waste from the construction works and materials.
- Use of hessian cloth to protect workers from falling objects where necessary.
- Provision and enforcement of protective gears to the workers.
- Enhanced monitoring and control of vehicular movement
- Placement of speed bumps on the access road to curb speeding motorists
- Training and awareness of construction workers and staff on safety precautions.
- Transport and storage of materials in bulk.
- Signage to alert general public
- Regular inspection of underground tanks for leakages
- Prioritizing the upgrade of equipment and installation of existing facilities of a network after a defined age.
Environmental and Social Management Plan

The potential Environmental and Social Impacts identified and the parameters they affect, are classified into the following categories: Impacts on air quality, water resources, ecological quality, biodiversity and socio-economic environment. Mitigation measures have been developed in respect of the significant negative Environmental and Social Impacts. In addition, the ESIA team has developed an Environmental Management Plan, which should be adopted in order to ensure that the mitigation process is successful and ensure environmental safeguards are appropriately implemented.

Table 1: A Summary of the Environmental and Social Impact Management Plan:

<table>
<thead>
<tr>
<th>Potential Negative Impact.</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION PHASE</td>
<td></td>
</tr>
<tr>
<td>Biodiversity and Vegetation Loss</td>
<td>• Do not site project in environmentally sensitive area e.g. watershed, wetland and riparian land.</td>
</tr>
<tr>
<td></td>
<td>• Clear vegetation only when and where necessary.</td>
</tr>
<tr>
<td></td>
<td>• Comply with land use plans and approved designs.</td>
</tr>
<tr>
<td></td>
<td>• Resurface and re–vegetate exposed bare areas preferably by using natural indigenous vegetation. Scientific evidence should be put in consideration to avoid introduction of invasive species.</td>
</tr>
<tr>
<td></td>
<td>• Have a green belt which will provide habitats for birds and small mammals once construction is done.</td>
</tr>
<tr>
<td></td>
<td>• Use manual labor rather than machinery</td>
</tr>
<tr>
<td>Disruption of existing natural environment and Modification of micro-climate.</td>
<td>• Development to be restricted to approved density, building line, land coverage, land ratio and zoning plan.</td>
</tr>
<tr>
<td></td>
<td>• Careful layout and orientation of structures to respect wind and sun direction</td>
</tr>
</tbody>
</table>
Environmental and Social Impact Assessment Study Report for Proposed Development of a Steel Processing & Storage Plant by Kanha Rolling Ji Mills Limited, on Plot No. Kajiado/Kaputiei-North/108320, Located Off Namanga Road, in Kisaju Area, Kajiado East Sub-County, Kajiado County

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate provision of green and open space planted with grass, shrub and tree cover</td>
<td>Adequate provision of green and open space planted with grass, shrub and tree cover</td>
</tr>
<tr>
<td>Minimum use of reflective building material and finishes for roof, walls and pavements</td>
<td>Minimum use of reflective building material and finishes for roof, walls and pavements</td>
</tr>
<tr>
<td>The flow of storm water to be harmonized with neighborhood and directed to well-designed drainage channels</td>
<td>The flow of storm water to be harmonized with neighborhood and directed to well-designed drainage channels</td>
</tr>
<tr>
<td>Waste generation</td>
<td>Contract a NEMA licensed waste handler and dispose offsite at county designated dumpsite.</td>
</tr>
<tr>
<td></td>
<td>Develop appropriate and adequate waste collection measures and facilities.</td>
</tr>
<tr>
<td></td>
<td>Provide for waste segregation into organics, metals, plastics at source for efficient management.</td>
</tr>
<tr>
<td></td>
<td>Maintain waste disposal records.</td>
</tr>
<tr>
<td></td>
<td>Manage materials responsibly to recover, reuse, recycle as appropriate.</td>
</tr>
<tr>
<td></td>
<td>Develop clean-up plans for wastes and spills.</td>
</tr>
<tr>
<td>Health, Safety and Security Concerns</td>
<td>Provide appropriate PPEs to the construction workers.</td>
</tr>
<tr>
<td></td>
<td>Maintain updated firefighting and detecting infrastructure.</td>
</tr>
<tr>
<td></td>
<td>Awareness training to construction and installation workers and staff on safety precautions.</td>
</tr>
<tr>
<td></td>
<td>Secure the construction area from unauthorized persons by ensuring that access is confined to restricted work sites (including those with operation of mechanical and electric equipment) to persons with permits.</td>
</tr>
<tr>
<td></td>
<td>Maintain a first Aid kit on site and train the workers on its use.</td>
</tr>
<tr>
<td></td>
<td>Implement appropriate traffic plans with the help of local police when (partial) closure of roads is required.</td>
</tr>
<tr>
<td></td>
<td>Put up appropriate safety signage.</td>
</tr>
<tr>
<td>Air emissions</td>
<td>Service and maintain machinery and vehicles regularly according to schedule.</td>
</tr>
</tbody>
</table>
- Switch off machines when not in use.
- Use standard fuel and lubricants
- Ensure water sprinkling on bare surface including access roads to arrest dust emission.
- Provide all construction staff with appropriate personal protective equipment (PPEs) such as dust masks, overalls, helmet, dust coats, safety boots and goggles.
- Ensure that all construction workers make proper use of the PPEs provided at all the time they are on site.
- Install air conditioning systems that uses and document a phase out program as per schedule by Montreal protocol and in accordance to control substances regulations
- Clean access routes in surrounding area on a daily basis to prevent dust.
- Collect and hold cleaning wastes (e.g. rags) in appropriate containers.
- Workers who may unavoidably have to work in dusty workplaces should be provided with nose and ear masks to protect them from excessive dust.
- Carry out regular inspection and maintenance of equipment to reduce levels of Green House Gas (GHGs) emissions into the environment.

<table>
<thead>
<tr>
<th>Noise pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Maintain regular servicing of machines to produce less noise.</td>
</tr>
<tr>
<td>- Construction and installation work undertaken during day hours</td>
</tr>
<tr>
<td>- Workers to wear PPEs.</td>
</tr>
<tr>
<td>- Use of human labor where appropriate rather than machines.</td>
</tr>
<tr>
<td>- Switch off machines not in use.</td>
</tr>
<tr>
<td>- Use of noise mufflers for noise attenuation.</td>
</tr>
<tr>
<td>- Fence off the construction area from unauthorized persons</td>
</tr>
</tbody>
</table>
- Develop and implement a comprehensive noise conservation programme that includes training, equipment maintenance, engineering controls, use of PPEs, noise measurements among others. Ensure the construction site is secured by appropriate noise attenuators

<table>
<thead>
<tr>
<th>Occupational health and safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ensure that work sites (especially excavation works), especially have proper protection with clear marking of safety borders and signals and fence off all dangerous areas.</td>
</tr>
<tr>
<td>• Carry out training of staff in EH&S monitoring and evaluation.</td>
</tr>
<tr>
<td>• The contractor should recruit H&S person during construction.</td>
</tr>
<tr>
<td>• All construction workers to first be trained on the appropriate use of the provided personal protective equipment.</td>
</tr>
<tr>
<td>• Project proponent to ensure each construction worker and visitors to the construction site also use the provided personal protective equipment.</td>
</tr>
<tr>
<td>• The project proponent to ensure that tools and equipment provided for use at the proposed construction site are well serviced and maintained.</td>
</tr>
<tr>
<td>• Project proponent to ensure that the construction site is free of hazards.</td>
</tr>
<tr>
<td>• The project proponent to ensure that among the construction workers are trained first aiders.</td>
</tr>
<tr>
<td>• Project proponent to ensure there is a fully equipped first aid station at the proposed project site.</td>
</tr>
<tr>
<td>• The contractor will ensure clear human resources policy against sexual harassment that is aligned with national law</td>
</tr>
<tr>
<td>• The contractor will integrate provisions related to sexual harassment in the employee Code of Conduct (COC)</td>
</tr>
</tbody>
</table>
- The contractors will ensure appointed human resources personnel to manage reports of sexual harassment according to policy.
- The contractor will ensure comply to provisions of Work Place Injuries and Benefits Act (WIBA) 2007.
- Provide sex-segregated clean toilets for male and female workers.
- Undertaking training and capacity building for all workers on use of chemicals.

Traffic related impacts

- Use reflective signature to direct traffic to designated areas.
- Use flag men/women to give directions to traffic.
- Sensitize drivers to observe speed limits.
- Develop and implement a traffic marshal plan for the construction site.
- Provide sufficient parking/holding area for traffic delivering and collecting materials from the construction site.
- Liaise with traffic police if temporary closure of road is required.

Sexual Exploitation and Abuse

- Develop and implement and SEA action plan with an Accountability and Response Framework as part of the C-ESMP. The SEA action plan will follow guidance on the World Bank’s Good Practice Note for Addressing Gender-based Violence in Investment Project Financing involving Major Civil Works (Sept 2018).

<table>
<thead>
<tr>
<th>Potential Negative Impact</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATION PHASE</td>
<td></td>
</tr>
</tbody>
</table>
| Waste generation | • Manage materials responsibly by applying principle of reuse, recover and recycle.
 • Segregate the waste at source.
 • Maintain waste disposal records.
 • Contract a NEMA licensed waste handler. |
<table>
<thead>
<tr>
<th>Health and Safety Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dispose waste in designated County government dumpsite by licensed NEMA waste handler</td>
</tr>
<tr>
<td>• Develop a septic tank for waste water management especially for domestic quarters</td>
</tr>
<tr>
<td>• The Proponent should prepare a Solid Waste Management Plan, which should contain an inventory of the types and quantities of waste to be produced.</td>
</tr>
<tr>
<td>• The most appropriate waste management approach for each type of waste including details on (temporary) storage, transport and final destination of the waste should be adopted.</td>
</tr>
<tr>
<td>• An assessment of any opportunities for reducing solid waste generation, in particular of hazardous and undesirable (persistent and non-reusable) types of wastes.</td>
</tr>
<tr>
<td>• The Proponent should maintain records of types, quantities, origin, (temporary) storage, transport and elimination/reuse of solid waste, and make these available to the works supervisor upon his request, as proof of proper waste management practices.</td>
</tr>
<tr>
<td>• Any waste including excess soil and quarry spoil should be disposed of at gazetted sites. The solid waste shall not accumulate on site, to cause odour, fly, or rodent problems.</td>
</tr>
<tr>
<td>• Ensure all waste generated during operational phase is managed and disposed as per the provisions of the Environmental Management and Coordination (Waste Management) Regulations, 2006</td>
</tr>
</tbody>
</table>

Health and Safety Concerns

- Form a Health and Safety Committee to monitor these issues and concerns.
- Enhance a health and safety policy and emergency response procedures and inform all staff in the processing plant.
- Conduct regular fire drills, fire training and general awareness and ensure firefighting equipment are serviceable.
| Increased water and energy demands | Place clear signage strategically located
| | Provide appropriate PPEs and enforce their usage
| | Conduct regular and scheduled medical examination of the employees
| | Provide First Aid Kits for emergency purposes
| | All sources of water have been metered to monitor consumption
| | Proponent will ensure that usage avoids wastage
| | The proponent will purpose to use the most readily available water at the site without compromising availability to other water users in the area
| | Contaminated water will be treated before discharge to the required standards in line with the water quality regulations.
| | Minimize water demand by ensuring used water from the cooling circuit is routed through an adequately sized and effective cooling tower and pressure filter to filter the water for recycling purpose.
| | Explore alternative sources of water that can be used such as roof catchment, rock catchment and collection from rain water pits to minimize drawing water from local borehole and pipeline for industrial use.
| | Provide adequate water storage tanks on site to store water from roof catchment from the extensive roofs of the go-downs during rainy season that can be used in cooling of plant and equipment.
| | The proponent will liaise with KPLC to power the plant appropriately.
| | The plant machinery will be designed to maximize power usage efficiency.
| | The proponent should consider supplementing electrical supply from the national grid with renewable energy such as |
- Solar to power the lighting system of plant and domestic or staff quarters.
- Excavation and construction machines will be in serviceable condition to reduce consumption of fuel.
- The proponent will ensure installation of generators and ensure they are in good working order to maximize fuel use efficiency.

Socio-economic Impacts and Social Conflicts

- County government authorities to control and monitor unplanned commercial activities around the site.
- Encourage public participation and other parties in project planning, design and implementation.
- Hold regular consultative meetings with neighbors to ensure good relationships.
- Resolve any conflicts with other parties amicably.

Noise Pollution

- Carry out baseline noise mapping.
- Adhere to the national standards set out by the EMCA noise and vibration regulations (legal notice No. 61 of 2009).
- All noisy plant machinery will be housed in sound proof buildings.
- Roller bearing to be used ensure that the noise levels do not go beyond 70 dB (A).
- Insulation against noise should be applied where applicable.
- Provide appropriate PPEs.
- Delivery of raw materials will be limited to day time only.

Air Pollution

- Concern is the emission from the induction furnace flue gas emissions from the induction furnaces will be directed through the bag filter as the air pollution device with the appropriate stacks (pipes) of 30-40 meters stack height area recommended.

Oil spills and leakages

- Fit hoses with quick-acting leak-proof cock or with an approved nozzle.
- Train and supervise employee to ensure minimal spillage of fuel.
- Use of approved fuel tanks and monitor fuel quantities to detect leakages.
- To prevent any leaks from getting into the environment, the tanks should be properly treated.
- A layer of clay should be used to encase the tanks during installation.
- The underground tanks must satisfy the national standards and be corrosion free.

Traffic related impacts

- Develop and implement a traffic marshal plan for the operational phase
- Provide sufficient parking/holding area for traffic delivering and collecting materials from the hot rolling steel mill

Occupational health and safety

- Ensure that work sites (especially excavation works), especially in the night have proper protection with clear marking of safety borders and signals and fence off all dangerous areas.
- Carry out training of staff in EH&S monitoring and evaluation.
- The proponent should recruit H&S person during construction.
- Inform neighbors about the construction programme in advance and adhere to it.
- Confine access to restricted work sites (including those with operation mechanical and electric equipment) to persons with permits.
- The proponent will ensure clear human resources policy against sexual harassment that is aligned with national law.
- The proponent will integrate provisions related to sexual harassment in the employee COC
The proponent will ensure appointed human resources personnel to manage reports of sexual harassment according to policy.
The proponent will ensure comply to provisions of Work Place Injuries and Benefits Act (WIBA) 2007.
Provide sex-segregated clean toilets for male and female workers.
Undertaking training and capacity building for all workers on use of chemicals.
Provide PPE to all workers using chemicals.

<table>
<thead>
<tr>
<th>Gender Based Violence at Community Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and implement provisions that ensure that gender-based violence at the company and community level is not triggered by the Project, including: effective and on-going staff and community engagement and consultation, particularly with women and girls; Review of specific project components that are known to heighten GBV risk at the community level, e.g. compensation schemes; employment schemes for women; delivery of water supplies; etc. Specific plan for mitigating these known risks, e.g. sensitization around gender-equitable approaches to compensation and employment; water services; etc. Ensure adequate referral mechanisms are in place if a case of GBV at the community level is reported related to project implementation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Violence against Children (VAW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and implement a Children Protection Strategy that will ensures minors are protected against negative impacts associated by the Project. All staff must sign, committing themselves towards protecting children, which clearly defines what is and is not acceptable behavior.</td>
</tr>
</tbody>
</table>
Children under the age of 18 years shall not be hired on site as provided by Child Rights Act (Amendment Bill) 2014

Labour Influx
- The Proponent should prepare Influx Management Plan
- The Proponent should prepare Labour and Recruitment Plan
- The Proponent should prepare a “code of conduct for workers”. This code of conduct will be signed and followed by all workers involved in the project.

Decommissioning Phase
- Constitute a decommissioning team and inform relevant authorities
- A due diligence decommissioning survey (audit) will be undertaken and submitted to NEMA for approval at least three months prior to the exercise.
- Dispose of all wastes responsibly
- Rehabilitate the degraded soil and natural flora.
- Recycle, reuse or recover demolition materials where appropriate
- Use of covered transport vehicles to avoid waste getting being blown off

Conclusion
This ESIA exercise is intended to inform project planning and implementation processes on issues of significant environmental and social concern. It has determined elements that may not be environmentally compliant and addressed them through the proposed mitigation measures as presented in this Report.

After assessing the project impacts, the ESIA Expert(s) are of the view that the negative impacts arising out of the proposed project development are manageable and therefore the Proponent should be allowed to proceed with this development as long as the proposed Environmental and Social Management Plan is implemented and compliance with all the relevant principal laws, by-laws and regulations relating to the proposed project are met.
TABLE OF CONTENTS

DETAILS OF PROPONENT AND EXPERT(S)

- Certification ... ii
- Acknowledgement .. iv

EXECUTIVE SUMMARY

- Overview and Background .. v
- Project location, objective and scope .. v
- Project cost and components .. v
- Process Inputs and products .. v
- Plant’s Expected Waste ... vi
- Grievance Redress Mechanism ... vi
- Project Location .. vi

Background on Steel Processing

- Summary of Steel Rolling .. vii
 - Types of Rolling .. viii
 - Economic Importance of Construction Industry .. viii

ESIA Study Team

- A summary of key findings of the study .. x
 - Positive: ... x
 - Negative: .. x

Environmental and Social Management Plan

- Environmental and Social Management Plan .. xi

Table of Contents

- ACRONYMS ... xxii

INTRODUCTION

- 1.1 Kajiado County ... 1
- 1.2 Kanha Ji Rolling Mill Limited ... 1
- 1.3 Origins and development of EIA ... 1
- 1.4 Rationale of the ESIA Study ... 1
- 1.5 The purposes of ESIA .. 1
- 1.6 Need for EIA Study ... 3
- 1.7 Project Justification ... 3
- 1.8 Project Objectives .. 3
- 1.9 Project Cost ... 4
- 1.6 Terms of Reference .. 4

2.0 ESIA Study Methodology AND APPROACH

- 2.1 The Approach .. 5
 - 2.1.1 Screening .. 5

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2 Scoping</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Literature Review & Desktop Studies</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Proponent / Ownership Verification</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Field Investigations</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Public Consultation</td>
<td>7</td>
</tr>
<tr>
<td>2.3.2 Photography and Transect Walks</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Impact Identification</td>
<td>8</td>
</tr>
<tr>
<td>2.3.4 Impact Analysis and Mitigation</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Reporting</td>
<td>8</td>
</tr>
<tr>
<td>3-0 ENVIRONMENTAL BASELINE INFORMATION</td>
<td>10</td>
</tr>
<tr>
<td>3-1 Overview</td>
<td>10</td>
</tr>
<tr>
<td>3-1.2 Climate</td>
<td>10</td>
</tr>
<tr>
<td>3-1.3 Geology and Soils</td>
<td>10</td>
</tr>
<tr>
<td>3-1.4 Hydro-ecology</td>
<td>10</td>
</tr>
<tr>
<td>3-1.5 Topographical Characteristics</td>
<td>11</td>
</tr>
<tr>
<td>3-1.6 Water resources</td>
<td>11</td>
</tr>
<tr>
<td>3-1.7 Flora</td>
<td>11</td>
</tr>
<tr>
<td>3-1.8 Fauna</td>
<td>12</td>
</tr>
<tr>
<td>3-2.9 Wind Patterns</td>
<td>12</td>
</tr>
<tr>
<td>3.2.10 Sunshine and Solar Radiation</td>
<td>12</td>
</tr>
<tr>
<td>3-2.11 Evaporation</td>
<td>12</td>
</tr>
<tr>
<td>3-2.12 Smog</td>
<td>13</td>
</tr>
<tr>
<td>3-2.13 Heat Balance</td>
<td>13</td>
</tr>
<tr>
<td>4.0 SOCIO-ECONOMIC and Land Use Characteristics</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Secondary and Primary Data</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Population size and composition</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1 Human Development Index (HDI)</td>
<td>14</td>
</tr>
<tr>
<td>4.2.2 Youth Development Index (YDI)</td>
<td>14</td>
</tr>
<tr>
<td>4.2.3 Gender Development Index (GDI)</td>
<td>15</td>
</tr>
<tr>
<td>4.2.4 Labour Force</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Land Use Infrastructure and External Services</td>
<td>15</td>
</tr>
<tr>
<td>4.3.1 Land and Land Use</td>
<td>15</td>
</tr>
<tr>
<td>4.3.2 Settlement patterns</td>
<td>16</td>
</tr>
<tr>
<td>4.3.3. Housing</td>
<td>16</td>
</tr>
<tr>
<td>4.3.4 Energy access</td>
<td>16</td>
</tr>
<tr>
<td>4.4 In Summary</td>
<td>16</td>
</tr>
<tr>
<td>4-5 Other Land Use Potential In Kajiado County</td>
<td>17</td>
</tr>
<tr>
<td>4.5.1 Agriculture</td>
<td>17</td>
</tr>
<tr>
<td>4.5.2 Tourism Potential</td>
<td>18</td>
</tr>
</tbody>
</table>
OTHER POLICY DOCUMENTS AND INTERNATIONAL TREATIES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1.16</td>
<td>The World Commission on Environment and Development</td>
<td>47</td>
</tr>
<tr>
<td>6-1.17</td>
<td>The Rio Declaration on Environment and Development</td>
<td>47</td>
</tr>
<tr>
<td>6-1.18</td>
<td>Sessional Paper No. 6 of 1999 on Environment and Development</td>
<td>47</td>
</tr>
<tr>
<td>6-1.19</td>
<td>The National Environmental Action Plan (NEAP)</td>
<td>48</td>
</tr>
<tr>
<td>6-1.20</td>
<td>The National Shelter Strategy to the Year 2000</td>
<td>48</td>
</tr>
<tr>
<td>6-1.21</td>
<td>The National Poverty Eradication Plan (NPEP)</td>
<td>48</td>
</tr>
<tr>
<td>6-1.22</td>
<td>The Poverty Reduction Strategy Paper (PRSP)</td>
<td>48</td>
</tr>
</tbody>
</table>

Institutional Framework

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-2.1</td>
<td>County government of Kajiado</td>
<td>49</td>
</tr>
<tr>
<td>6-2.2</td>
<td>National Environment Management Authority (NEMA)</td>
<td>49</td>
</tr>
<tr>
<td>6-2.3</td>
<td>Director of Physical Planning</td>
<td>49</td>
</tr>
<tr>
<td>6-2.4</td>
<td>Energy and Petroleum Regulatory Authority</td>
<td>49</td>
</tr>
<tr>
<td>6-2.5</td>
<td>Neighborhood Associations and/or General Public</td>
<td>50</td>
</tr>
</tbody>
</table>

Conclusion

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-3</td>
<td>Conclusion</td>
<td>50</td>
</tr>
</tbody>
</table>

PUBLIC CONSULTATION AND PARTICIPATION

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Legal Requirement</td>
<td>51</td>
</tr>
<tr>
<td>7.2</td>
<td>Overview</td>
<td>51</td>
</tr>
</tbody>
</table>

GRIEVANCE REDRESS MANAGEMENT (GRM)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>IMPACT IDENTIFICATION, ANALYSIS AND MITIGATION</td>
<td>61</td>
</tr>
</tbody>
</table>

Overview

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>Overview</td>
<td>61</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Impact identification and predication</td>
<td>61</td>
</tr>
</tbody>
</table>

Anticipated Environmental Impacts

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-2</td>
<td>Anticipated Environmental Impacts</td>
<td>62</td>
</tr>
</tbody>
</table>

Impacts during Construction Process

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-3</td>
<td>Impacts during Construction Process</td>
<td>62</td>
</tr>
</tbody>
</table>

Positive Impacts

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-3.1</td>
<td>Positive Impacts</td>
<td>62</td>
</tr>
</tbody>
</table>

Negative Impacts

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-3.2</td>
<td>Negative Impacts</td>
<td>65</td>
</tr>
<tr>
<td>8-3.3</td>
<td>Potential Mitigation Measures</td>
<td>67</td>
</tr>
</tbody>
</table>

Impacts during Operational Phase

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-4</td>
<td>Impacts during Operational Phase</td>
<td>69</td>
</tr>
</tbody>
</table>
ACRONYMS

BOD – Biological Oxygen Demand
CBD – Convention for Biological Diversity
CGK – County Government of Kajiado
COC – Code of Conduct
CPP – Consultation, Public involvement and Participation
CSR – Corporate Social Responsibility
EA – Environmental Audit
EIA – Environmental Impact Assessment
EMCA – Environmental Management and Coordination Act
ERC – Energy Regulatory Commission
ESMP – Environmental and Social Management Plan
ESIA – Environmental and Social Impact Assessment
KFS – Kenya Forest Service
NEMA – National Environment Management Authority
NHC – National Housing Corporation
PPE – Personal Protective Equipment
ToR – Terms of Reference
WRA – Water Resource Authority
WMT – Waste Management Team
INTRODUCTION

1.1 Kajiado County

Kajiado County is located in the Southern part of Kenya. It borders Nairobi County to the North East, Narok County to the West, Nakuru and Kiambu Counties to the North, Taita Taveta County to the South East, Machakos and Makueni Counties to the North East and East respectively, and the Republic of Tanzania to the South. It is situated between Longitudes 36° 0’ and 37° 0’ East and between Latitudes 10° 0’ and 30° 0’ South. It enjoys the benefits of being within the Nairobi Metropolis which consists of 4 counties; Nairobi, Kiambu, Machakos and Kajiado. The county’s projected population for 2018 stands at 1,112,823, with male constituting 50.2 percent and female 49.8 percent. The county is highly cosmopolitan with almost every ethnic community in Kenya represented in the major urban areas. The county continues to experience rapid urbanization and urban growth as a result of high migration from other parts of the country and within the borders. The county covers an area of 21,900.9 square kilometres (Km²).

1.2 Kanha Ji Rolling Mill Limited

The proponent, Kanha Ji Rolling Mill limited is a locally incorporated private company under the Companies Act, 2015. It proposes to establish Steel processing plant for manufacturing, processing as well as recycling of steel products to be sold locally and also for export. The project will be located in Kisaju area, off the Namanga Road, on Land Registration No. KAJIADO/KAPUTIEI-NORTH/108320 at 1°38’05.65” S and 36°52’51.65”E at an elevation of 5384ft above sea level within Kisajus Area, Kajiado East Sub-County, Kajiado County.

1.3 Origins and development of EIA

1.4 Rationale of the ESIA Study.

This Environmental and Social Impact Assessment Report has been prepared following a request by the proponent, to the consultant, to develop an Environmental and Social Impact Assessment Report and an Environmental and Social Management Plan (ESMP) for the proposed construction and installation of Steel Processing Plant and other associated facilities.

Environmental and Social Impact Assessment (ESIA) is a formal process used to predict how development or construction project will affect natural resources such as water, air, land,
socioeconomic and biophysical resources. Environmental Impact Assessment studies have mostly been applied to individual projects and have led to various offshoot techniques, such as health impact assessments, social impact assessments, cumulative impacts assessments, risk assessments and strategic environmental assessments (environmental assessments of proposed policies, programs, and plans). In most cases, social and economic impacts are assessed as part of the environmental impact statements. In other cases, they are considered separately. An EIA usually involves a sequence of steps: (1) Screening to decide if a project requires assessment and to what level of detail; (2) Scoping to ensure the EIA focuses on key issues and to determine, where more detailed information is needed (3) Description of existing environmental baseline conditions (4) Preliminary assessment to identify key impacts, their magnitude, significance, and importance; (5) Evaluation of Alternatives to the project; (6) Implementing the main EIA study, which involves detailed investigations to predict impacts, assess their consequences, or both.

1.5 The purposes of ESIA

The most fundamental aim of an ESIA is it acts as an aid to decision-making. For the decision maker, for example, NEMA and other relevant government agencies, it provides a systematic examination of the environmental implications of a proposed action, and sometimes alternatives, before a decision is taken. The ESIA can be considered by the decision maker along with other documentation related to the planned activity. EIA is normally wider in scope and less quantitative than other techniques, such as cost-benefit analysis (CBA). It is not a substitute for decision making, but it does help to clarify some of the trade-offs associated with a proposed development action, which should lead to more informed and structured decision making. The ESIA process has a potential, not always taken up, to be a basis for negotiation between the developer, public interest groups and the planning regulator. This can lead to outcomes that balances well the interests of the development action and the environment.

Secondly, developers may see the ESIA process as another set of hurdles to jump before they can proceed with their various activities; the process can be seen as yet another costly and time-consuming activity in the development consent process. However, ESIA can be of great benefit to them, since it can provide a framework for considering location and design issues and environmental issues in parallel. It can be an aid to the formulation of development actions, indicating areas where a project can be modified to minimize or eliminate all together its adverse impacts on the environment. The consideration of environmental impacts early in the planning life of a development can lead to more environmentally sensitive development; to improved relations between the developer, the planning authority and the local communities; to a smoother development consent process, and sometimes to a worthwhile financial return on the extra expenditure incurred. O’Riordan and Sewell (1981) links such concepts of negotiation and redesign to the important environmental themes of „green consumerism“ and „green capitalism“. The growing demand by consumers to goods that do no environmental damage, plus a growing market for clean technologies, is generating a response from developers. EIA can be the signal to the developer of potential conflict; wise developers may use the process to negotiate „environmental gain“ solutions, which may eliminate or offset negative environmental impacts, reduce local opposition and avoid
costly public inquiries. This can be seen in the wider and contemporary context of corporate social responsibility (CSR) being increasingly practiced by major businesses (Crane et al. 2008).

1.6 Need for EIA Study

The metal products sub-sector, which falls under the manufacturing sector plays a vital role in the country’s economy especially with the industrialization strategy, and just like other development activities, it has some adverse impacts to the environment. To ensure sustainable development, it is important to take into consideration the possible environmental impacts associated with this project to ensure a safe and healthy environment at all stages of the project operations. Environmental impact assessment (EIA) is one of the tools used by planners to achieve this goal. Although the project is of a relatively low magnitude, the proponent in an endeavor to comply with legal requirements recognized the need to prepare an ESIA project report to entrench environmental considerations in the project development and enhance environmental conservation.

1.7 Project Justification

The project is necessitated by the emerging high demand for steel products in the country. With the current economic growth in Kenya, (0.5 % in 2002, 2.9 % in 2003, 5.1 % in 2004, 5.8 % in 2005, 6.3 % in 2006 and 7.1 % in 2007) [5-7], many opportunities will be created for investors. Since steel is a major raw material for most industries, high growth in the steel industry is expected. This proposed project is meant to stimulate economic and social development of our country through meeting the high demand of steel products in the country and also to meet proponent’s economic desires and returns on investment. The project area is along Namanga Road in an area with low density development and therefore suitable for such project hence there will be no land use conflict. Further, it will stimulate economic and social development of Kisaju and Kajiado County as whole. It is therefore hoped that once the project is implemented, the proponent’s goal to stimulate economic and social development of our country and its own economic goals through meeting the high demand of steel products will be achieved. The suitability of this kind of development can be justified on diverse of use. This include the demand based on nature and trend of developments in most urban areas, policy focus; plot area and zoning regulation, land-use and infrastructure compatibility, economic impacts and Environmental Impact Assessment findings among others. It also contributes to governments Big 4 agenda through promotion of manufacturing sector.

1.3 Project Objectives

The objectives of the ESIA study are as follows;

I. To construct and install a Steel Processing Plant with water reticulation and power connection to mains and auxiliary structures.

II. To meet the growing need of Steel products in the County and Country at large.

III. To create job opportunities to the society for both skilled and semi-skilled workers

IV. To increase availability and affordability of steel products particularly for the construction industry.
V. To Assist the National Environment Management Authority (NEMA), to decide on the implementation of the project.

Specifically, the study is expected to among others:

I. Evaluate and assess the baseline information (physical, biological and socio-economic environment) within the project area of influence.

II. Conduct inclusive and participatory public consultation, engagement and participation during the study.

III. Screen the project and its components against all potential significant adverse impacts on the environment, socio-economic well-being of the local population, as well as the requirements on health and safety.

IV. Ensure sustainable development and good environmental practice by ensuring that natural resources are used wisely in the project to ensure inter and intra generational equity. This will ensure ecologically sound and sustainable project.

V. Identify, prevent, avoid or offset any negative impacts that may emanate from the project thus preventing losses or any disadvantages to any stakeholders.

VI. Identify potential environmental impacts, both direct and indirect.

VII. Categorize, measure and propose appropriate mitigation measures for identified adverse impacts of the project.

VIII. Assess the compliance of the project with policy and legal frameworks as stipulated in EMCA 2015 and any other relevant laws of the republic of Kenya.

IX. Develop a comprehensive Environmental and Social Management and Monitoring Plan (ESMMP), indicating the key action items and plans that will be required in order to ensure compliance during construction and operation phases of the project.

1.4 Project Cost

The proposed project is estimated to cost an approximate of KES 25,000,000 Kenya shillings Twenty-Five Million shillings itemized in section 3-3 project budget in the body of the ESIA report.

1.6 Terms of Reference

The Terms of Reference (ToR) for the ESIA study were prepared and submitted to the National Environment Management Authority (NEMA) for approval. The ToR was approved by NEMA as evidenced by a copy of the ToR approval letter from NEMA.
2.0 ESIA STUDY METHODOLOGY AND APPROACH

2.1 The Approach

At the beginning of the assignment inception meetings were held between the Proponent and the Consulting Team Leader both in the Kitengela Gray ork hotel and at the proposed project site (Mzee Oloyionte’s Home). The meetings served as formal introduction for clarification of Terms of Reference (ToR) for the study team and physically show the team the proposed project site. ToR report was developed and submitted to NEMA.

The methodology followed during the ESIA study involved site visits, photographing, interviews, literature review and consultations with stakeholders such as the County Government of Kajiado, neighbours and the wider public. Those consulted were generally supportive of the Project. They highlighted the likely benefits of the project e.g. income generation, increased urbanization, increased availability of steel products, improved security and improved development of the area, employment opportunities.

In order to address all the likely negative impacts that may arise as a result of the proposed development, mitigation measures and specific strategies have been prescribed. Other aspects that have been highlighted include main actors, likely costs and appropriate implementation time frames.

2.1.1 Screening

As best practice the proposal was screened based on its characteristics and listed projects in the 2nd schedule EMCA CAP 387. Whereas the project is deemed not to be out of character within the already build environment and the activity falls under second schedule of EMCA amendment 2015, ESIA would be necessary for the proposed project in line with NEMA’s initiative to inculcate the culture of environmental considerations in the many emerging developments especially in the construction industry and manufacturing sector and for specific use

2.1.2 Scoping

In scoping, focus was on environmental impacts of great concern. Environmental issues were categorized into physical, natural/ecological and social, economic and cultural aspects. Impacts were also classified as immediate and long-term impacts. A scoping survey was undertaken in the initial phases of the study and it involved:

- Project Background: this will give the brief history of the proposed project site, the parties involved and justification of the project in terms of demand or lack of the same, the project area, relevant policy and legislation, identification of any associated project, or any planned projects including products within the region which may compete for the same resources; the project including products, by-products, processes both at implementation and operational level, resources required for successful implementation and operation of the project and the different options considered.

- The proposed project objectives; both in the short and long run; and how they are linked to the overall objectives.
Present environmental conditions; description of the project site, ecological zoning as well as the state of the environment and its surroundings. Attempts will state if it is already suffering from degradation, causes of the original degradation if any established.

Identification of Environmental Impacts; the report will distinguish between significant positive and negative impacts, direct and indirect impacts and immediate and long term impacts which are unavoidable and / or irreversible,

Community/ Stakeholder Consultations: these will be undertaken to determine how the project will affect the local people / various stakeholders.

Cost- Benefit Analysis; to evaluate the economics of the project and establish its viability in terms of the expected environmental concerns and measures.

Development of an Environmental Management Plan (EMP); to mitigate negative impacts, recommending feasible and cost effective measures to prevent or reduce significant negative impacts to acceptable levels,

Development of a Monitoring Plan; this will be used in monitoring the implementation of the mitigation measures and the impacts of the project during construction and operational phases, including an estimate of capital and operational costs, and Make necessary recommendations pertaining to the proposed development.

The multiple benefits from environmental scoping include, among others:

- Helping to provide environmental information about important effects of the project, including issues of particular concern to affected groups and individuals;
- Stimulating early discussion among the developer, environmental authorities, other interested parties and the public about the project and its environmental impacts;
- Making planning, management and assessment of resources required for the project more efficient and based on environmental studies;
- Identifying legislation or regulatory controls which may be relevant to the project and provide opportunities for the assessment of different management and control systems to be undertaken in parallel with the implementation; and
- Providing NEMA with information on proposed projects that may or may not infringe environmental regulations.

2.2 Literature Review & Desktop Studies

A literature review was undertaken based on the findings of the scoping process, and it involved reviewing legal frameworks, policies, development plans and past studies carried out in the area. It also informed the ESIA study on the baseline conditions and solidified the legal, institutional and environmental setting of the proposed project.

In particular, the study reviewed the following:

- Review of the Architectural Design or Drawings of the proposed steel plant including site layout and spacing.
- Review of relevant legislations applicable to this project including the Environmental Management and Conservation Act 2015; the Environmental Impact Assessment and Audit Regulations 2003; legal notice No. 31 of 2019, The Environmental Management Coordination Act (Waste Management) Regulations 2006; the Environmental Management Coordination
ENVIRONMENTAL & SOCIAL IMPACT ASSESSMENT STUDY REPORT FOR PROPOSED DEVELOPMENT OF A STEEL PROCESSING & STORAGE PLANT BY KANHA ROLLING JI MILLS LIMITED, ON PLOT NO. KAJIADO/KAPUTIEI-NORTH/108320, LOCATED OFF NAMANGA ROAD, IN KISAJU AREA, KAJIADO EAST SUB-COUNTY, KAJIADO COUNTY

(Water Quality) Regulations 2006; and the Environmental Management and Coordination (Noise and Excessive vibration pollution Control) Regulations 2009 (Legal Notice 61), Air quality Regulations 2009 among others. Sectoral legislation applicable to this Project include the Water Act (2016), the Constitution, The Public Health Act (CAP. 242), Employment Act (2007), Physical Planning and Land Use Act, 2019 among others.

- Assembly and review of baseline data, maps, reports and any relevant information on the existing environmental and social conditions of the Project Area influenced by the proposed development
- Review of existing legislation, regulation and policies relevant to the proposed Project;
- Preparation of checklists that consist of a simple catalogue of environmental factors which are compared to the activities to be developed.
- Early meetings with the Client to deliberate on the proposed project, keeping in mind the site and activity options under consideration;

2.2.1 Proponent / Ownership Verification
This was done to review the history of land ownership and documents regarding the proposed project. The land ownership document (Title Deed) certifies that the proponent is registered as the absolute proprietor of the land comprised in the title (Appendix). The document was duly issued to Kanha Ji Rolling Mill Ltd on the 18th day of December 2018 by the district land registry office in line with the Land Registration Act (No. 3 of 2012). This exercise also included plans and drawings review.

2.3 Field Investigations
Activities implemented during field investigations involved;

- Site visits to the Project Area and the neighboring areas within the zone of influence of the project to collect primary baseline environmental and socio-economic data.
- Photographing the significant aspects to aid in describing baseline environmental and social conditions of the Project area and its influence zone.
- Acquisition of relevant documents from the authority such as County government departments, among others which were within the Project influence zone.
- Public consultation in form of onsite key informant interviews with various departments within the county government, questionnaires distributed randomly to the residents within the various areas; ad hoc interviews with interested persons; and public consultation meetings in form of meetings with the public.
- Identification of sensitive receptors including health facilities, religious facilities, educational institutions among others along the project route.

The main purpose of the field investigation was to verify information and data collected during the desktop study and collection of any new information that may assist in the assessment of impacts and design mitigation measures as well as undertake stakeholder consultations with the communities within the Area of Influence (AoI).

2.3.1 Public Consultation
The project site is situated in relatively low developed area with low density build environment. Stakeholders were however consulted including neighbors to the project site. The methods used
included Focus Group Discussion of 32 stakeholders including representatives of line departments of the Kajiado county government, questionnaires (Appendex) and key informant interviews. The questionnaire interviews were mainly for neighbours in the area surrounding the proposed project. The information obtained from the interviews was used to identify impacts and develop mitigation measures.

2.3.2 Photography and Transect Walks

Photography was used to capture salient features and baseline conditions in the project site and its neighborhoods. The photos were used to define existing features in the project area and identify soils, and floral species in the area. Photography was also combined with transect walks and used to also identify impacts of the proposed project. Transects walks and use of GPS were used to capture salient features for mapping the project site.

2.3.3 Impact Identification

The proposed project’s impacts were identified using a developed checklist, public consultation information, literature and professional knowledge. The checklist focused on information gained from the scoping process and other cross sectoral issues. Impacts were first distinguished as either positive or negative. The cross sectoral issues or aspects were: Health safety; Air Quality; Pollution; Social Aspects; Water Resources; Climate; Infrastructure, and Utilities.

2.3.4 Impact Analysis and Mitigation

The proposed project’s both positive and negative impacts were analyzed. The negative impacts were analyzed to denote their significance based on their characteristics and this was also assisted in categorizing impacts per project phase. Significance was judged based on their capacity to change baseline conditions beyond acceptable standards or legislative provisions. A qualitative scoring matrix was used to give a value/score of each impact on environmental and social aspects. For each impact three scores were classified as per its effect on the aspects and these are explained as:

1 – Insignificant
2 – Moderate
3 – Significant

An EMP was developed to manage the significant impacts and it was guided by the environmental and social aspects concerned. Its objectives are outlined as well as the costs; parties responsible, and indicators for monitoring to ensure compliance and mitigate the negative impacts.

2.4 Reporting.

In the entire exercise, the proponent and ESIA experts contacted each other on the progress of the study and signing of various documents. The proponent will have to submit 10 copies of this report alongside a CD to the National Environment Management Authority for review and issuance of an EIA license. All the materials and workmanship used in the execution of the work shall be of the best quality and description. Terms of Reference Report was submitted to NEMA as specified in Regulation 11 (1) and 11(2) of the Environmental (Impact Assessment and Audit) Regulations, 2003. The Environmental Impact assessment (EIA) Study Report was prepared as specified in Regulation
18 of the Environmental (Impact Assessment and Audit) Regulations, 2003 and submitted to NEMA as specified in Regulation 19 of the Environmental (Impact Assessment and Audit) Regulations, 2003. Any material condemned by the architect shall be removed from the site at the contractors cost. Environmental concerns need to be part of the planning and development process and not an afterthought. It is therefore advisable to avoid land use conflicts with the surrounding area through the implementation of the Environmental Management Plan (EMP).
3-0 ENVIRONMENTAL BASELINE INFORMATION

3-1 Overview

3-1.1 The climatic and physical conditions of the site in Kisaju area compares favorably to that of the wider Kajiado County where the proposed project is located. A combination of one or more of these factors directly influence urban housing development, and are prerequisite to site analysis and planning.

3-1.2 Climate

The county has a bi-modal rainfall pattern. The short rains fall between October and December while the long rains fall between March and May. There is a general rainfall gradient that increases with altitude. The bimodal rainfall pattern is not uniform across the County. The long rains (March to May) are more pronounced in the western part of the county while the short (October to December) rains are heavier in the eastern part. The rainfall amount ranges from as low as 300mm in the Amboseli basin to as high as 1250mm in the Ngong hills and the slopes of Mt. Kilimanjaro. Temperatures vary both with altitude and season. The annual rainfall trend for Kajiado East, North, Central and West vary from the years 1970 to 2013 and indicates high level of inter-annual variation. Rainfall is becoming highly variable and unpredictable especially in recent decades and the year 2000 was recorded as the driest year. The highest temperatures of about 340C are recorded around Lake Magadi while the lowest of 100C is experienced at Loitokitok on the eastern slopes of Mt. Kilimanjaro. The coolest period is between July and August, while the hottest months are from November to April. Kisaju area has a wide range of temperature change, and the dry season sees a lot of erosion and soil movement. Rainfall dissolves some of the soil materials and holds others in suspension. The water carries these materials down through the soil. This is known as leaching. Over time this process can change the soil, making it less fertile.

3-1.3 Geology and Soils

The Geological formation of the area is composed of overlying soft black cotton soil and Kapiti phonolites. In some areas near the project site there are quarrying activities for building stones which are close to the ground. Basement system rocks like gneisises, chists and quartzite are also found near the area. Other minerals include gypsum which is mined at Isinya, a few kilometers from Kisaju area.

3-1.4 Hydro-ecology

The Ngong hills are a significant water catchment and conservation area in Kenya. It is the source of Mbagathi River which drains to Athi River which is the second largest river in Kenya. There is also Isinya river that flows about 5km from the proposed project site. Given that the area receives low amounts of rainfall annually, its hydro geological potential is also low. There is underground water supply at between 30-100m deep and in some areas much shallower. The main aquifer in the area is in the gravel and Athi tuff, which is found between 30-100m depending on the site. The region is very dry with no continually flowing rivers and is officially designated as semi-arid. The annual
rainfall varies between 300 and 600mm. There are two wet seasons, the ‘short rains’ between October and December and the ‘long rains’ between March and May. In recent years there have been long period of drought when there has been little or no rain probably due to effects of climate change.

3-1.5 Topographical Characteristics

Kajiado County is characterised by plains, valleys and occasional volcanic hills. The lowest altitude is about 500 metres above sea level at Lake Magadi while the highest is 2500 metres above sea level in Ngong Hills. The landscape within the county is divided into Rift Valley, Athi Kapiti plains and Central Broken Ground. Lays. The Rift Valley is an elongated depression on the western side of the county running from North to South. It is characterised by steep walls forming plateaus, scarps and structural plains which forms features such as Mount Suswa and Lake Magadi. The lake is formed of deposits of soda ash and is approximately 100 square kilometers in size laying in an endorheic basin formed by a graben. The lake water forms a dense sodium carbonate brine, precipitates vast quantities of trona (sodium sesquicarbonate). Commercial exploitation of trona is a major activity in the lake. The altitude ranges between 600 and 1740metres above sea level. Mount Suswa is a shield volcano which has a unique double crater with a moat-like inner crater surrounding a tilted block of rock with a high potential of tourism activities. The Athi Kapiti plains are a critical dispersal area for Nairobi National Park (NNP), and act as a wet season concentration area for wildlife dispersing out from Amboseli National Park to the south. It’s also a preferred calving ground for the wildebeest migrating from the southern plains of Tsavo West, Chyulu and Amboseli. Species consist of plains game such as wildebeest, Kongoni and zebra with attendant Thomson’s gazelle and Grant’s gazelle. Cheetah and hyena are also common. The Nairobi and Amboseli National Parks are both Important Bird Areas and hold more than 500 bird species with over 40 birds of prey. The altitude ranges from 1580 to 2460 metres above sea level. The Ngong hills are the catchment areas for Athi River, which is fed by Mbagathi and Kiserian rivers tributaries. The Central Broken Ground is an area stretching 20-70 kilometres wide from the North Eastern boarder across the county to the southwest where altitude ranges from 1220 to 2073 metres above sea level.

3-1.6 Water resources.

Kajiado County is an Arid and Semi-Arid Land (ASAL) characterized by an acute shortage of clean and safe water for drinking and other domestic uses. According to the County Statistical Abstract 2015, only 67.2 percent of the total population have access to safe water. The number of households (HH) with an access to piped and portable water is about 36.8 percent of the total population. The County’s zones with mean annual precipitation being approximately 400 mm/year (1983-2015, ARC2 data). Largely, the county does not have a reliable source of water with the main sources of water being seasonal rivers, shallow wells, prings, dams, water pans and boreholes. Apart from the Athi River which is several kilometers from the project site, there is a Isinya river which is approximately 5km from the proposed project site. The area also has high potential for borehole water and rain water harvesting. It also receives tapped water from the Isinya-Tanathi water supply line and source.

3-1.7 Flora
The vegetation in this zone is the dry semi-deciduous type that varies from dry lowland forest and bush land. The vegetation is composed of quite a number of acacias including the flat-topped *Acacia Abyssinica*, umbrella thorn (*A. tortilis*), *A. hockii* and the yellow-barked *Acacia (A. xanthophloea)*. Other dominant trees in the Zone III include *Euphorbia obavafolila*, *Cordia africana*, *Strychnos henningsii*, *Diospyros abyssinica*, *Albizia schimperiana*, *Ochna holstii*; *Chionanthus battiscombe*, *Teclea* species as well as *Calodendrum capense* and *Zanthoxylum usambarense*. There are no plants of conservation importance in the study area.

3-1.8 Fauna

In the early 80’s the area used to harbour several species of wild animals in its natural savannah ecosystem. However, human settlement and development activities largely displaced the animals. The project is located in an area that is already highly developed for industrial and commercial uses. The fauna population is relatively low hence the anticipated impacts from the clearance of the project site is insignificant. It is an already build up area and therefore no fauna were recorded and therefore none will be displaced.

3-2.9 Wind Patterns

A significant feature of the climate of Kisaju area is the frequency with which the wind comes from the North East and to a somewhat lesser degree to the South East. These are the North East and South East Monsoon, which blow very steadily but without high intensity. Both wind run and mean wind speed are at a maximum in December. Winds also remain high during January, February and March, which coincide with the period of higher potential evaporation. The strongest winds occur during the dry season just prior to the "Long Rains" when speeds of 20 to 2 miles per hour are not uncommon from mid-morning to early afternoon; at other times of the year winds speeds are usually 10 to 15 miles per hour. During the night the wind is usually light. In the squalls sometimes associated with thunderstorms, short-lived wind speed of up to 70 miles per hour has been known to occur.

3.2.10 Sunshine and Solar Radiation

Solar radiation and sunshine is considered together since they are so closely connected. Kisaju area experiences a total of about 2,500 hours of bright sunshine per annum, which is equivalent to annual mean of approximately 6 to 8 hours of sunshine per day. July and August are characterized by cloudiness and during these months the average daily sunshine in Kisaju is 4 hours. Frequently there are several days in succession when the sun fails to penetrate the thick stratocumulus cover, although on other days the cloud does break to a greater or lesser extent for a short period. There is about 30% more sunshine in the afternoon than in the morning and it follows that westerly exposures receive more isolation than easterly one.

3-2.11 Evaporation

The annual variation of evaporation is unexpected from consideration of temperature and sunshine factors. The mean annual evaporation as measured by the pan is seen slightly to exceed the main rainfall at the altitude of Kisaju area, but it would be expected that at higher altitudes this position would be reversed. The peak evaporation values are during March, followed by January, February
and October. The mean yearly evaporation is 72/ mm. The highest annual evaporation is 1951 mm while the lowest is 1519 mm.

3-2.12 Smog.

Smog is common during the rainy season most common hazards to flying occur over this period. This is mostly associated with the development of towering cumulus and cumulonimbus clouds. A further hazard common in the area is the formation of low stratus clouds during the early morning.

3-2.13 Heat Balance.

On hot sunny days, when the wind is light, considerable turbulence is experienced in the first few 100 feet above the ground due to differential heating of the surface, and dangerous down droughts frequently occur in areas where the configuration of the ground is uneven. Such conditions occurring in the vicinity of an airfield will affect the performance of the aircraft with low power to weight ratio.
4.0 SOCIO-ECONOMIC AND LAND USE CHARACTERISTICS

The socio-economic baseline has been established from secondary data, consultations conducted and observations on-site. As far as has been possible the focus for the socio-economic baseline has been on data collection and observations in the beneficiary communities and those neighbouring the plant that would be affected during the construction and operation phase of the project.

4.1 Secondary and Primary Data

Secondary socio-economic data was obtained from books, reports, journals and other sources such as the County Integrated Development Plan (CIDP) for County Government of Kajiado County, County Environmental Plan, Feasibility study report among others. Primary data was collected from key informants and consultations which included public barazas.

4.2 Population size and composition

The 2018 projected population in Kajiado County stood at 1,112,823 with male population constituting of 50.2 percent and female population constituting of 49.8 percent of the total population. The population is projected to be 1,236,723 in 2020. The county’s population growth is 5.5 percent occasioned by migration from the neighbouring counties attracted by employment opportunities and availability of land for settlement. Analysis of the county’s population depicts that children between ages 0-4 years are more than other population categories contributing 16 percent of the total population. Ages 5-9 years and 10-14 years follows accounting for 14 percent and 12 percent respectively. Population aged 60 years and above represents 3.3 percent of the population. The total urban population is 395,051 representing 35 percent of the total population. This constitutes of 199,738 males and 195,314 females. The 2009 Kenya Population and Housing Census indicated that 17,466 persons representing 2.8 percent of the population were living with different types of disabilities across the county. The major types of disabilities were noted to be physical, visual, hearing and speech. Despite not getting the 2019 census data for the area, the projections show a relatively rapid increase in pollution size in the area.

4.2.1 Human Development Index (HDI)

HDI integrates three basic dimensions of human development. Life expectancy at birth reflects the ability to live a long and healthy life. Mean years of schooling and expected years of schooling reflect the ability to acquire knowledge. Gross income per capita reflects the ability to achieve a decent standard of living. The county HDI stands at 0.55 comparing to the national HDI which is 0.59. Human Poverty Index gives a focus to the most deprived groups in an area in the three essential elements of a human life reflected in HDI. The county HPI is 27.0 percent. Other indices used to assess human development include: youth development index, gender parity index, human poverty index and gender development index. HDI measures development in a given geographical area or population group.

4.2.2 Youth Development Index (YDI)

The Youth Development Index measures progress on youth development in terms of the levels of education, health and well-being, employment and opportunity, as well as civic and political participation. In order to achieve and maintain a high YDI, there is need to ensure the youths complete the equitable and quality education, increase the percentage of youth with relevant
knowledge and skills to promote sustainable development and achieve gender equality and empower all women and girls.

4.2.3 Gender Development Index (GDI)

The GDI measures gender gaps in human development achievements by accounting for disparities between women and men in three basic dimensions of human development: Health; Knowledge and living standards using the same component indicators as in the HDI. The other related measure to GDI is Gender Empowerment Measure (GEM). The GEM measures gender equity in political and economic power by assessing the level of female representation at various levels such as political representation, professional and management positions, and earned incomes. The county GDI was 0.60 in comparison to national which is 0.55 in 2013.

4.2.4 Labour Force.

In 2018, the county productive population was projected at 624,184 and is estimated to have grown to 694,732 and 773,254 in 2020 and 2022 respectively. This makes 56% of the total population. There is need to address employment situation through provision of appropriate skills and new technology; formulation of favorable policies; empowerment programs targeting various interest groups like youth and women; business information; access to affordable capital; The county should also invest in programs to mainstream HIV Aids, drugs and substance abuse to ensure a more productive society.

4-3 Land Use Infrastructure and External Services

4-3.1 Land and Land Use

Land is considered an important factor of production and development. The county is endowed with vast land and diverse land resources within the arid and semi-arid zones of Kenya. It must therefore be put to best and sustainable use. The county, the predominant activity on the land is livestock farming where majority of the local residents in rural areas (particularly the Maasai) practice pastoralism. There are however areas where small and medium scale crop farming is practiced in high potential areas such as Ngong, Loitokitok, and Nkuruman. Flower farming is mainly practiced in large scale within Isinya and Kitengela areas. Horticultural farming is also picking targeting both the local and international markets.

Due to increased demand on land and pressure from the Nairobi City, rapid urban development is also taking place across the county. These include industrial development, massive housing developments, quarrying/mining, among others. The county is also home to important natural resources such as Amboseli National Park, Ngong Hills, Oloolua Forest, Lake Magadi, Oldonyo Orok in Namanga, Maparasha Hills, Oloorgisalie historical site, several wildlife sanctuaries such as Kimana, among others. The high demand for land for various use has significantly contributed to increased land subdivision and fragmentation of agricultural land into unsustainable portions hence affecting rural livelihoods.

In accordance with the County Government Act of 2012 and the Physical Planning Act 2019, authority for the development planning and control of development is vested in the County government of Kajiado. The existing local physical development plan indicates that the area is zone for high and medium development.
4.3.2 Settlement patterns

Human settlement pattern in the county is divided into urban and rural, with majority of the population settling in urban areas compared to rural areas. The county has experienced intensified population pressure that has triggered land use/cover change compounded by climate change. Expansion of settlement areas due to population influx from the City has increased the demand for housing and other infrastructural development in the county. This has seen sprawling of settlements with and outside the boarders of major towns in the county. Major urban areas include Ngong, Ongata Rongai, Kitengela, Ngong and Loitokitok. Privatization of land tenure, subdivision and commercialization of communal rangelands have resulted to further disaggregation of human settlement in the county. The rural community who were formally nomadic pastoralists settle and have to alternatively manage cattle on their parcels thus leading to land degradation while reducing flora and fauna. This has further compounded into human-wildlife conflict that is rampant across the county.

4.3.3. Housing

As per the 2009 Kenya Population and Housing Census, the total number of households stood at 173,063. Household distribution by stone (wall materials), cement (floor materials) and corrugated iron sheet (roofing materials) was 27.6, 57.3 and 67.1 percent respectively which is mainly urban population. Household distribution by mud (wall materials), earth (floor materials) and mud/dung (roofing materials) was 22.7, 38.7 and 10.3 percent respectively which is mainly rural population. Due to the occurrence of rapid urbanization and mushrooming of informal settlements, there is need for access to adequate, safe and affordable housing across the county using Appropriate Building Technology (ABT).

4.3.4 Energy access

The County is one of the frontier counties in the development of green energy. Ngong Hills wind power station is connected to the national power grid with a capacity of 25.5 MW. Kipeto 1&2 wind power project, Magadi solar project and Mt. Suswa geothermal project are also underway. The major sources of lighting energy are electricity, solar, lantern and tin lamp. The Analytical Report on Housing Conditions, Amenities and Household Assets 2012 indicates that the percentage distribution of households using electricity is 39.8, tin lamp 39.8 and lantern 18.9 percent. The major sources of cooking energy are Liquefied Petroleum Gas (LPG), paraffin, firewood and charcoal. The percentage distribution of households using the smoky cooking fuels (paraffin, firewood and charcoal) in rural areas is 94.6 and 74.5 percent in urban areas. Firewood is the most used cooking fuel in rural areas with 75.3 percent of households while charcoal is mostly used in urban areas with 35.6 percent households. LPG is mostly used for cooking in urban areas followed by electricity with 21.4 and 2.0 percent respectively. The county has great potential in the area of green energy, specifically wind, solar, biogas among others. In order to ensure access to affordable, reliable, sustainable and modern energy for all, the county needs to increase accessibility and increase the share of renewable energy in the national grid. The government has put a ban on charcoal production in the country and is promoting tree planting to improve the country’s tree cover, there is need to promote use of alternative sources of energy for domestic and industrial use.

4-4 In Summary
The project site is connected to mains electricity, supplied by the Kenya Power & Lighting Company (KPLC). Telephone and fax services are provided by Telkom Ltd and the area is covered by mobile phone services. Kisaju town and surrounding areas are also provided with police station, schools, hospital services, banks among other services. There are very limited waste disposal services provided by county government. There is no central sewage system in the area and therefore individuals’ developers and home owners largely use septic tanks and soak pits to manage their liquid waste.

Kisaju area and its adjacent areas are among the key peri-urban areas in Kajiado County that has continued to experience high rates of demographic transition over time. This is mainly due to the influx of urban migration as well as natural population increase. The Kisaju area also acts as one of the dormitories for the workers who are employed in the City of Nairobi in the proximity. Currently most businesses including, industrial, commercial and offices are located in the Kajiado East sub-county and its environs. Its proximity to the city of Nairobi makes it preferable since it is easy to move goods and products to the city. The robust road network also provides an added advantage to the business as it eases movement and transportation of steel products to other parts of the country. This further justifying the relevance of the proposed project.

4-5 Other Land Use Potential In Kajiado County

4.5.1 Agriculture

The Agriculture Sector comprises of three sub-sectors namely: Agriculture, Livestock and Fisheries; the key sub-sectors are considered key drivers for county’s economic growth and critical for attainment of the 10 percent economic growth rate envisaged under the Kenya Vision 2030. It directly contributes to the county’s economy through enhancing food security, income generation, employment and wealth creation. It further contributes indirectly to economic growth through forward and backward linkages with other sectors.

4.5.1.1 MAIN CROPS PRODUCED

The main food crops produced in the county are maize, beans, potatoes and vegetables. Commercial farming of onions and tomatoes is done though some are grown in small quantities. Horticulture is also gaining popularity through irrigation schemes mainly in Isinya sub-county and Kajiado North. Rain fed agriculture is not sustainable due to erratic rains. Persistent drought and famine have negatively impacted on the pastures and water availability.

4.5.1.2 AVERAGE FARM SIZES

There are small, average and large scale farmers in the county. Small scale farms have an average of 9 hectares while large scale farms average is 70 hectares. The total acreage under food crops is 1,067.58 hectares and the acreage under cash crops is 50.59 hectares. Most people have small farms which are irrigated in productive areas of Loitokitok, Isinya and Nguruman. Large farms of more than 50 acres are mostly for rain fed agriculture although this is slowly becoming unpopular because of irregular rainfall patterns.

4.5.1.3 LIVESTOCK PRODUCTION

Pastoralism is the main source of livelihood to majority of rural households in the county. The main livestock breeds are sheep (718,950), goat (699,658), beef and dairy cattle (411,840),
commercial chicken (276,291), indigenous chicken (267,913), donkeys (63,980), pigs (6,127) and camel (1,597)-Source: Kenya population and housing census 2009. Livestock products in the county include, beef, milk, skins and hides. There is however very few value addition ventures in the county.

4.5.1.4 RANCHES
Following the enactment of the Group Representative Act of 1968, Kajiado county had a total of 56 Group Ranches. However, the number of ranches has greatly reduced following major subdivisions and the sale of land for human settlement. The county has a total of 43 group ranches that are completely adjudicated and 13 un-adjudicated group ranches. The pressure for subdivision is still escalating with some undergoing adjudication and privatization currently.

4.5.1.5 FISH FARMING
Fish farming is also being promoted in various parts of the county. There are 3500 fish ponds in the county some of which were constructed during the Economic Stimulus Program. The main fish species are tilapia, catfish, common cat (cyprinus corpio) and mosquito fish (gandusia affinis—which is reared to control mosquitoes). This however has been limited by lack of fingerlings, inadequate fresh water, low local demand and lack of cooling facilities. It has been observed that the locals are changing their attitude towards consumption of fish, and this is likely to increase demand in future.

4.5.2 Tourism Potential
Tourism in Kajiado is mainly an economic and social occurrence. Amboseli National Park is one of the 9 No. major tourist attraction sites sitting on 39,206 Ha; and home to a range of African wildlife and over 400 species of birds. Other attraction sites include: Lake Magadi; Lake Kwenia; Ngong Hills, Chyulu Hills; Olorgesailie pre historic site; Mt Suswa, a remarkable double crater volcano with a complex braided system of lava tubes and caves; Ol Doinyo Orok Mountain and; Nguruman Escarpment; rich Maasai culture among others. According to the Tourism Regulatory Authority Regulations, (2014) there are three (3) classified tourism hotels within the County. Amboseli Sopa Lodge has 83 rooms with 166 bed capacity while Kibo Safaris Camp has 60 rooms with 120 bed capacity, which are three star hotels. Amboseli Serena Lodge Kajiado has 92 rooms and 184 bed capacity, which is a four-star hotel. These hotels are located in Kajiado South Sub-County.

4.5.3 Mining
The main minerals in the county include limestone and marble and gypsum. Other extractive resources are sand, ballast, gravel and soda ash. There exists potential in the extraction of most of the resources including processing. In spite of their economic contribution, these activities have a potential to socially and economically destroy and degrade the environment, thus need for sustainable use of resources.
Fig 1. Site Location Map (Not to Scale)

The access road leads to the project

Sketch site map location.
Above is the CAPITAL BLOCKS & PAVERS and another Go-down neighbouring the proposed project site.
Part of Kijasu Town opposite the project
Project site location on Google earth and map as shown by this red box on the upper map
5.0 Project Description

The project is focused on constructing and installing a Steel Processing Plant. The actual design components of the project include:

- An Administration block.
- Weighbridge
- Security office
- Parking lot
- Septic tank and soak pit
- Washrooms
- 2 pinch rolls
- Flying shear
- Tmt roll
- DC Panel
- Water tanks
- Oil tank
- Intermediate
- Furnace
- Transfarm
- Mill
- Associated piping work
- Entrance and exit
- Site landscaping

5.0.1 Steel Processing by Induction Furnace.

The proponent proposes to utilize the induction furnace melting and heating processing system. Medium frequency coreless induction furnace is generally used for the production of steel in the steel melting shops of low capacity. The induction furnace is equipped with a converter for producing the necessary medium frequency from the 50 Hz frequency of the power supply. For this, a direct voltage is produced in a rectifier, and is fed to the inverter via a smoothing choke, and a medium frequency voltage is produced in the inverter with the aid of compensating capacitors and the inductivity of the furnace coil. The regulation of the converter is carried out by the built-in control electronics. The control of the furnace is carried out using the devices in the operating cabinet and if necessary with the aid of a processor. A transformer is used for the energy supply. The furnace transformer is connected to the power supply network. The transformer converts the supply voltage to the voltage required for the operation of the furnace which is generally 770 V for medium
frequency induction furnace. The transformer is usually equipped with the built-in monitoring devices such as thermometers, oil filling level monitoring, Buchholz relays and air de-humidifiers. The smelting is carried out in the refractory crucible made normally with either acidic (silica based) or neutral (alumina based) monolithic refractories. The crucible is heated by an induction furnace coil surrounding the crucible. Making of a heat in an induction furnace consists of certain cyclic activities. These activities are known as ‘heat cycle’ or ‘production cycle’. A heat cycle has two components namely (i) melt cycle, and (ii) non-production cycle. The melt cycle is the period when maximum power is continuously applied to the furnace and the charge is added. The non-production cycle is when no or reduced power is being applied, such as when the initial charge is being added, when slag is being removed, when a temperature dip or analysis sample is being taken, waiting for an analysis result, and tapping of the furnace empty etc. The furnace utilization is the melt cycle divided by the heat cycle expressed as a percentage. If the melt cycle is of 80 minutes and the non-production cycle is of 40 minutes, then the heat cycle is 120 minutes. The 80 minute of melt cycle divided by the 120 minute of the heat cycle times 100 gives a utilization of 66.67 %. If in induction furnace, it is a process which requires 10 tons of liquid steel to be tapped per heat and the heat cycle is such that it can only achieve 66.67 % utilization, then it is necessary to have power supply capable of melting 15 tons per heat.

The induction furnace for melting sponge iron is required to have a large ratio of cross sectional area to volume so that the heat transfer is high and to keep the slag hot and fluid. The induction furnace uses the transformer principle of induction, i.e. when an electrical conductor is placed in a fluctuating magnetic field then a voltage is induced in the conductor. In crucible furnaces, this voltage causes strong eddy currents, which due to the resistance of the material, cause it to be heated and ultimately to melt. The water is used for the cooling of the coil. The cooling water lines are monitored with regard to volume and temperature. During the production of steel, substantial quantity of electrical energy is needed. Besides the theoretical energy required for producing steel, energy is also required for compensating the losses which are taking place while producing steel. The energy losses increase the specific energy consumption and decrease the furnace efficiency. The losses which take place during the production of steel are (i) thermal losses, (ii) furnace coil losses, (iii) capacitor bank losses, (iv) convertor losses, and (v) losses on main side transformer. Thermal losses are the main losses and contribute maximum towards loss of energy. The major thermal losses in induction furnace (Fig 1) are (i) radiation loss from the furnace top, (ii) conduction losses from the refractory lining, (iii) heat losses in the cooling water of the coil, (iv) heat carried by the removed slag, and (v) heat carried by the gases being emitted from the furnace top. Further, during the making of a heat, the furnace is constantly losing heat both to the cooling water and by radiation from the shell and the exposed metal surface at the top. Electrical energy is required to be spent to substitute these heat losses. Hence longer is the heat time the greater is the energy consumption and lower is the furnace inefficiency.
5.0.2 FACTORS AFFECTING CONSUMPTION OF ENERGY IN INDUCTION FURNACE

Metal losses for metallic charge materials depend upon the physical size of the component and their quality, but are normally less than 5 %, with a fair proportion of this loss being due to spillage and splash during the de-slagging and pouring operations. The one factor which has the maximum effect on the energy consumption is the level of the furnace utilization. Higher is the utilization means energy efficient production cycle. Charge materials used for making a heat are important for controlling the quality of steel being made in the induction furnace. The materials ensure that the liquid steel made has the aimed mechanical properties and chemical composition after its casting and is free from defects. Besides the quality of steel, the charge materials also affect (i) volume of slag produced, (ii) life of refractory lining, and (iii) safety of both the plant and the working personnel. Further, the charge materials along with the charging practice have a considerable influence on the specific consumption of electrical energy and the furnace productivity.

In induction furnace, the main charge materials are metallics consisting of scrap and sponge iron. Both the steel scrap and iron scrap is used. Iron scrap brings carbon to the furnace bath. Pig iron is also sometimes used in some furnaces for the purpose of introducing carbon to the bath. The ratio of these materials used for producing a heat depends on their relative availability at the economic cost at the plant location. In case of induction furnaces using high sponge iron to scrap ratio, a carburizer (e.g. anthracite coal or petroleum coke) is also added for controlling carbon content of the bath. Metallics are charged in the furnace either mechanically or manually. The control of the melting operation in the furnace and the chemistry of the liquid steel are dependent on the degree at which the mix of metallics can be optimized. The qualities of metallics are required to be known for proper charge mix for efficient operation of the furnace.

For improving the quality of produced steel, input scrap quality is required to be controlled. The important parameters needed to be controlled in scrap charge are (i) size, (ii) bulk density, (iii) chemical composition, (iv) cleanliness of the scrap materials meaning that they are to be free of contamination such as rust, scale, sand, dirt, oils/grease, and (v) non-metallic coatings such as zinc, tin, and chromium etc. The most troublesome residual elements (such as copper, cobalt, tin, arsenic, antimony, nickel, and molybdenum etc.) from scrap are ultimately concentrated in steel. Their presence in steel induces undesirable resistance to deformation, hot shortness, and mechanical defects. If the scrap sections are long and extend out of the top of the furnace, these, though ultimately melt but take time, and hence influence the furnace utilization. The size of the scrap is important to ensure the charge does not bridge. On an average, each piece is not to have a dimension greater than 33 % of the furnace diameter and no dimension is to exceed 50 % of the furnace diameter. The feed rate of the system is to be able to deliver the full charge into the furnace within 65 % to 70 % of the actual melt cycle. The initial materials are required to be charged in the furnace as quickly as possible and of sufficient density to allow maximum power. For optimum performance, the density of the charge materials is needed to be high and is not to be less than 1.3 tons per cubic metre. The quantity of
initial furnace charge materials is to constitute a substantial percentage of the rated capacity of the furnace.

During the melting of steel scrap, most of the scrap is suspended with air inside the furnace. As the induction field raises the temperature of the scrap, it now must go all the way to the melting point of steel, because there is no carbon present to lower the melting point. Hence, this requires more energy and time for the initial melting. In addition, once the steel reaches a temperature of around 700 deg C the increase in oxidation becomes dramatic and during the heat up from 700 deg C to around 1540 deg C, the surface of the steel scrap continues to oxidize at a higher and higher rate. Once molten, the droplets of steel continue to oxidize as they fall down the charge until they reach the bottom of the furnace and join the molten bath with hopefully higher carbon. The carbon in the bath stops the oxidation of the iron. The thinnest steel scrap can go from room temperature to glowing cherry red colour within just one or two minutes increasing the oxidation. The oxides of iron increase the amount of slag formed. All of this oxidation produces a highly reactive FeO slag.

Cleanliness of the scrap is very important since dirty or contaminated scrap tends to deposit a slag layer on the furnace refractory. This occurs at, or just below, the liquid level in the crucible and restricts the quantity of power which is drawn by the furnace. The effective reduction in the internal diameter of the furnace can also be there which makes the charging more difficult and protracted. This again affects the energy efficiency of the furnace. Further, rusty scrap takes more time to melt. It also contains less metal per charging. Dirty metallics charge results into higher volume of slag which means higher specific consumption of power. For every 1 % slag formed at 1500 deg C energy loss is 10 kWh per ton. The sponge iron charge in the furnace is characterized by (i) high porosity, (ii) low density, (iii) low thermal conductivity, (iv) high specific surface area, (v) high oxygen content, and (vi) intermediate carbon content. Sponge iron has uniform chemical and physical characteristics. It has low percentage of tramp metallic elements (around 0.02 %) and low sulphur content but usually is associated with high phosphorus content. Sponge iron with higher carbon content is preferred since it reduces the requirement of the carburizer in the furnace.

The melting process of sponge iron is considerably influenced by the physical, chemical, and thermal characteristics of the sponge iron. Some of these characteristics are shape, size, density, chemical analysis, and degree of metallization. Other parameters such as the method of charging, the type of furnace, the temperature of the bath, the chemical composition of liquid metal in the furnace, and the flow of fluid inside the furnace and around the particles are also of appreciable importance. The gangue content and unreduced iron oxide content of the sponge iron is needed to be as low as possible. Low iron oxide content is important for safety reasons as well as for energy consumption reasons. If a large quantity of unreduced iron oxide is introduced into a high carbon bath at high temperature, there is a vigorous carbon boil which can be extremely dangerous. Advantages of using sponge iron in induction furnace are (i) no additional desulphurization is needed and at the same time the low sulphur content in the steel can be achieved, (ii) final product contains low amount of residual metals like chromium, copper, molybdenum, tin etc., (iii) charging time decreases which also reduces the overall heat loss, and (iv) improves the product quality consistency.
The role of carburizer during steelmaking in the induction furnace is to remove oxygen from the sponge iron which is present in the form of FeO and to provide carbon pick up in the liquid steel to the desired level. Anthracite coal and petroleum coke are the two popular carburizers being used during steelmaking in the induction furnace. Recovery of carbon depends on the size and quality of the carburizer, method of addition, and time of addition. It can be expected to be within a range of 85% to 95%. Higher ash content in the carburizer lowers the carbon being added to the bath, while increasing the generation of slag. Carbon input in the bath through pig iron or cast iron scrap is more desirable in order to have better recovery of carbon. Use of very fine particle size of the carburizer is to be avoided because of excessive loss. Other carburizers which can be used are metallurgical coke, iron carbide and metallurgical silicon carbide (63% silicon and 31% carbon). Silicon carbide is normally charged with scrap and has the advantages of (i) faster absorption, (ii) acts also as a de-oxidizer, and (iii) improves the lining life.

Besides metallics and carburizer, deoxidizers are used for making of steel in an induction furnace. Deoxidizers are ferro alloys (silico-manganese, ferro-manganese, and ferro-silicon), and aluminum. The yield of the ferro alloys depends on their specification (size, grading, and composition). An accurate calculation of the charge-mix based on material analyses is necessary. Also, a precise weight determination and metering of the charge materials and additives (carburizer and deoxidizers) are basic prerequisites for minimizing melting times and power needs besides ensuring proper composition of the liquid steel. The use of clean and dry charge materials is necessary for better result.

Regardless of whether the furnace is to be charged manually or mechanically, the charge materials are required to be weighed and the materials are to fit into the furnace. A crane scale can be used to weigh the charge material.

5-0.3 CHARGING AND MELTING OPERATION

Medium frequency coreless Induction furnaces for making steel are operated without a sump (heel). The material is charged into the empty furnace up to the upper edge of the furnace coil. Immediately after the tapping of the previous heat, the condition of the lining material need to be inspected and then the scrap charging is to start. With the start of scrap charging, the heat cycle starts. The quality of charge materials, sequence of their charging has substantial influence on the heat cycle. As soon as the first lot of scrap is charged in the furnace, power is switched on and current starts flowing at a high rate and a comparatively low voltage through the induction coils of the furnace, producing an induced magnetic field inside the central space of the coils where the crucible is located. The induced magnetic fluxes are thus generated through-out the available charge in the crucible. As the magnetic fluxes generate through the scrap and complete the circuit, they generate and induce eddy current in the scrap. This induced eddy current, as it flows through the highly resistive bath of scrap, generates tremendous heat and melting starts. It is thus apparent that the melting rate depends primarily on two things namely (i) the density of magnetic fluxes, and (ii) compactness of the charge. The denser is the charge and occupying more space in the furnace, it reduces the melting time and hence the energy consumption.
The heating of the scrap starts as soon as sufficient charge material is in the furnace to enable power to be applied. The goal is to get the energy into the charge as quickly and efficiently as possible. A power supply able to deliver maximum power throughout the heat cycle, always achieves the best melt rate. As the charge goes through the melting process, the voltage applied to the coil is allowed to increase. This increase gives two advantages namely (i) it ensures maximum kilowatts are continuously applied to the coil, and (ii) a high coil voltage means that the voltage induced into the charge is higher and hence the contact heating in the charge is more efficient. Typically, this results in a 10% improvement in the melting rate as compared to a power supply where the power draw drops as the charge passes through the melting process.

In a medium frequency furnace, the heat is developed mainly in the outer rim of the metal in the charge but is carried quickly to the centre by conduction. Soon a pool of liquid metal is formed in the bottom causing the charge to sink. The melting material settles together, and the furnace can be recharged with more material. In the medium frequency furnaces, the material is not charged into the liquid bath, but onto the still solid material. At this point, additional charging is to be done gradually. The eddy current, which is generated in the charge, has other uses. It imparts a molten effect on the liquid steel, which is thereby stirred and mixed and heated more homogeneously. This stirring effect is inversely proportional to the frequency of the furnace. The melting continues till around one half of furnace volume is filled with the liquid steel. At this point a sample is taken for the analysis and the furnace is deslagged in a slag pot by tilting. Slags generally developed in medium frequency coreless furnaces are not fluid and is quite heavy and sticky and often dry and in the form of a dross. During the removal of the slag, the power is to be off to ensure all the slag floats to the surface and can be removed. The longer the power is off the greater is the effect on the overall furnace utilization.

Based on the analysis results, the requirement of further charge of scrap, sponge iron and carburizer is determined and the charging is continued. In case the bath develops a convex surface, then the power input is decreased temporarily to flatten the convexity and to reduce the circulation rate. Sponge iron can be added directly into the liquid metal when the stirring action accelerates the transfer of heat to it and promotes the melting. Care is required to be taken to have enough molten pool before adding sponge iron. When sponge iron is charged in the furnace, continuous removal of slag is required for smoothening of the melting operation. This is because slag gets solidifies on top of the liquid bath and hinders further melting of the sponge iron. The continuous removal of slag is carried out by scooping the slag out of the furnace. Removal of the slag is generally facilitated by the use of de slagging spoons fitted with long steel bars. These spoons are specially made for the purpose. The slag removal with spoon is possible since the slag is thick at this stage and its viscosity is high. The manual slag removal is a hard and unpleasant job.

Manual removal of slag can be enhanced by using a slag coagulant. The slag coagulant exfoliates to tie the slag pieces together so they can be lifted off. If slag coagulants are used to aid the removal of the slag, their use is to be strictly controlled to prevent chemical attack on the furnace lining material. Slag volumes can be reduced by selecting clean and proper charge materials and with sponge iron having higher percentage of total iron. The enhancing of the melting rate also
reduces the slag formation. In case of higher amount of sponge iron in the charge, there is a need for carbon (anthracite coal or petroleum coke) addition to the bath for the removal of oxygen. The oxygen present in the sponge iron is in the form of FeO, which reacts vigorously with carbon in the liquid bath and improves heat transfer, slag-metal contact and homogeneity of the bath.

Irrespective of charging mode, sponge iron is always charged after initial formation of molten pool (i.e. hot heel) by melting of steel scrap. Melting of sponge iron is greatly influenced by factors like carbon content of the liquid bath and degree of metallization of sponge iron. Carbon content of the liquid bath reacts with unreduced iron oxide content of the sponge iron giving evolution of CO and CO2 gases from liquid bath i.e. carbon boil takes place, which results into subsequent removal of hydrogen and nitrogen gases, ultimately producing clean steel. Carbon boil occurs at slag metal interface by the reaction 3 FeO + 2C = 3 Fe + CO + CO2. Carbon content in the liquid bath is to be kept at a proper level in order to maintain appropriate carbon boil during the melting period. The amount of carbon required (C, in kg) to reduce the FeO content of the sponge iron is given by the equation C = 1.67 [100 – % M–(% Slag /100) x % Fe]. Here, M is degree of metallization and Fe is amount of iron in the slag.

5.0.4 MAKING THE HEAT READY, TAPPING, AND EMPTYING OF THE FURNACE
When the liquid filling level reaches around the upper edge of the coil, i.e. heat is about to be completed, bath analysis sample and bath temperature is taken with the help of dip probes. For this activity power is kept under hold. Immediately after the temperature dip and analysis sample are taken, holding power is restored to the furnace. For the sake of accuracy and speed, spectrographic analysis is usually done. Based on analysis results trimming additions are carried out in the baths for adjustment of bath analysis. The trimming addition material is melted, and the bath temperature is brought up to a temperature of 80 deg C to 100 deg C below the tapping temperature. The carburizer used for trimming needs to be small-grained to increase its surface area as this ensures that it goes into solution quickly. When the tapping ladle is ready, the furnace is skimmed and brought up to the tapping temperature. In the case of medium frequency furnaces, 2 to 5 minutes are needed for this activity. The tapping temperature is to be decided taking into account, the chilling effect of the ferro-alloy addition. Before tapping a small amount of ferro-alloys are charged in the furnace so as to avoid any boiling action during tapping. In the teeming ladle, the required amount of ferro-alloys and carburizer (if required) is put in the ladle bottom and the metal is tapped. During tapping, the faster the furnace is emptied the better it is. The time taken for emptying of the furnace affects the furnace utilization.

5.0.5 PRECAUTIONS REQUIRED AND SAFETY ISSUES
The smelting process is always associated with dangers due to molten material which cannot always be accurately estimated in advance. It is often said that known dangers are no dangers, or at least dangers which can be anticipated and counteracted. The important safety related issues during steelmaking in induction furnaces are due to the ejection of molten metal in the form of splashes, small and large drops, heat radiation from the melting bath and water vapour explosions. These occurrences are explained here. Metal splashes with a relatively low volume of melt are created when very small metal parts come into contact with the melting bath and are ejected from the melt.
If these parts are also wet or damp, this leads to the ejection of small and large drops. The operator on the operating floor is exposed to a great deal of heat. If the operator is not using proper protective equipment (PPE), this can lead to burns on the skin and damage to the eyes. Water vapour explosions always occur when liquids get under the surface of the bath. In extreme cases, 1 cc (cubic centimetre) of water penetrating deep below the surface can expand in a moment to 1,600 times its original volume. Water can get into the melting bath during the melting process from the materials charged or by damp or wet tools. When operating the induction furnace, it can happen that the ramming mix has suffered damage, and the melt has been moved forward up to the coil. If this condition leads to a blockage of the windings and the release of water, water can also penetrate under the melt, resulting in a sudden upward ejection of the melt. This can cause powerful water vapour explosion causing the melt thrown out onto the furnace platform.

The important precautions required and the safety issues are described below.

- Neatness and tidiness of the workplace which means that the furnace platform is to be tidy at all times, with the necessary tools ready to hand in their proper places. Any other materials or objects lying around are required to be removed without delay.
- Adequate lighting at the workplace ensures that irregularities or problems on the furnace platform can be recognized and rectified in time.
- Damage to equipment, operating switches, electrical and hydraulic lines are to be noted in the log book and reported to maintenance so that the repairs can be carried out. Indicating lights are safety devices, and need to be tested in planned intervals.
- The condition of the crucible is required to be inspected visually after every emptying or every tapping. Possible cracks in the crucible wall are indicated by dark traces, which can then be inspected more closely.
- The materials to be charged are to be inspected when being prepared. Pipes, tubes or hollow components are to be sorted out by hand, and checked to ensure that they do not hold any water since it can lead to water vapour explosions.
- Visitors or personnel from other areas are to be made aware of the dangers and they are to be told to remain at a safe distance.
- The minimum PPEs required by the personnel at the furnace operating floor are safety helmet, safety shoes, long trousers, cotton clothes, and protective goggles with side protection.
- The emergency outlet channel must be kept dry and clean at all times.
- The furnace body is to be inspected once every week, and cleaned every month of dust, small particles of scrap and other impurities.
- Any oil which has leaked out is to be picked up and the spot is covered with sand. The leak is to be located and repaired.
- Two emergency escape routes are to be available from the furnace platform in the event of accidents. These routes are to be kept clear at all times, and are not to be blocked even for short periods.
- When working with metal tools in the melting bath, and with the furnace switched on, the tools are to be earthed, or the operator is to at least wear dry leather gloves. Such work is only to be carried out with the furnace switched off. The tools are to be warmed up over the bath before immersion, in order to remove any damp or humidity.
The formation of bridges is to be avoided in order to prevent the unforeseen breakthrough of molten material to the outside. If a bridge has formed, the furnace is to be switched off and tilted, so that contact with the melt can be made using a thin handspike. In some cases, the bridge can be melted with the furnace at low power and in the tilted position and the furnace then recharged with more material through this opening in the basic position, and then fully melted.

In the event of a power failure when the furnace contains a full melt, and it is not known how long it will take to correct the problem, the further procedure must be established. There are two options – either to allow the melt to solidify, or to empty the crucible.

The electrical insulation of the live components against earth is measured with the aid of an earthing relay. If the melt at earth potential approaches the coil, the resistance is going to fall, and the system is to be switched off.

If work is to be carried out with the furnace in the tilted position, the furnace is required to be secured against tipping. The furnace is also to be secured when pushing out the crucible.

The condition of the crucible is needed to be inspected visually, and the remaining wall thickness determined with the aid of measuring devices. An assessment of the average remaining wall thickness can be made from the frequency display.

5-1.1 Existing Development in the Neighbourhood

The neighbourhood where the proposed project site is located is already characterized with medium residential, commercial, industrial and institutional developments and mixed use. The proposed development would hence easily blend with the existing character and development trends of the neighbourhood and the wider Kisaju area.

5-1.2 Construction and Installation of 1 No of Steel Processing Plant

The project proposes the construction and installation of 1 Steel Processing Plant and other support services, associated facilities and amenities. The attendant site and approved plant’s plans for the proposed development have been attached in Appendix 1.

5-1.3 Driveway, Walkway and Parking Spaces.

A paved driveway and walkway is to be constructed to give motor vehicle traffic and pedestrians a proper surface on which to move. The proposed development will have adequate car parking. The improved sub-grade will be made up of compacted quarry stone chippings; the sub-base is of 150 mm thick hand-packed hard quarry stone; and the road surface will be 50 mm thick standard paving blocks.

5-1.4 Utilities and Services

i) Water Supply

The proposed development will be connected to an already available borehole for water supply. The new development will require a new and larger water connection. It is recommended that the plant retain 2 – 3 days’ water storage of about 10,000 litres. This is to cushion the plant against
the frequent water shortage in the area. The plant will also be treating and recycling the water to ensure availability of water for processing and to minimize usage and wastage.

ii) **Foul Water Drainage**
In the area surrounding the project site, sewage management is a major problem since the area is not connected to any central or municipal sewer network and therefore the resident mainly relies on septic tanks for sewerage management. The proponent of the proposed development will therefore undertake to connect the building to a septic tank and soak pit to be constructed to Engineer's specifications.

iii) **Storm Water Drainage**
The proposed development will increase paved area. This will result in increased surface water discharge. It is therefore recommended that adequate drainage channels and rain water harvesting be provided to accommodate the increased discharge and to harmonize it with neighboring premises.

iv) **Solid Waste Disposal.**
The proposed development will generate solid waste. The proponent will engage a NEMA Licensed private contractor to collect the waste. It is further recommended that the compound has point designated for storage of solid waste before collection.

v) **Electricity Supply.**
Electricity is to be connected to the proposed development from the main national electricity grid by Kenya power and lighting company.

VI) **Telecommunication.**
Both fixed landline and cell phone services are available on site for connection.

5-1.5 **Site Landscaping**
The project will involve excavation of soil material. The site development involves landscaping with excavated soil and rock material. Excess material will be disposed off-site at the recommended site by the County government of Kajiado. A green belt should be created within the site to provide a habitat for birds and small mammals.

5.2 **PROJECT ACTIVITIES**

5-2.1 Overview
The activities of the proposed project include –
- Site preparation and clearance of existing vegetation
- Excavation and earth works
- Construction of foundation
- Construction of super structure and associated facilities
- Installation of Steel processing plant
- Development of external works
5-2.2 Site Preparation

i) Fencing
 The exact site location will be secured by hoarding along local access road.

ii) Site Clearance
 The site clearance entails removal of any obstructions on the way of the intended construction activity. In the proposed project, this will involve clearing of grass vegetation and removal of the top loose soils. Site clearance will not involve the use of heavy machinery or explosives.

iii) Laying Out the Site
 The site will then be laid out to identify the location of the proposed plant’s structure on the site. The corner points and edges of the proposed plant's structures will be established accordingly. The marking out will use stakes and strings as well as chalk lines. The technology to be used in the design of the proposed project will comply with both local and international standards. It will be the responsibility of the design engineer and the contractor to ensure design standards and constructions implementation from certifying bodies such as Engineers Registration Board, Ministry of industrialization and manufacturing and National Construction Authority are also referred to prior and on operation of the construction and installation activities.

5-2.3 Excavation and Earth Works

In order to develop the proposed Steel processing plant, excavation and earth works are involved. The main method of excavation to be used is trenching in order to accommodate the underground tanks and structural footing. The site is on black cotton soil which will be excavated to find a proper surface for the foundation. As much as possible, the excavated material is to be used for backfilling and landscaping. The excess excavated loose soil material will be disposed off-site at a location approved by the County government of Kajiado. No major rock obstruction is registered on site to warrant use of explosives. The load bearing capacity of the underlying soil is adequate and safe to support the building foundation without additional stabilization.

5-2.4 Construction of the Steel Processing Plant

The proposed Steel processing plant will be constructed and installed as per engineering standards and quality.

5-2.5 Construction of the administration block and other support facilities
The super structure comprises of the floor slaps, walls, doors, windows, internal finishes and the roofing. All these will be constructed as per the engineer’s specifications. The proponent in liaison with the contractor is therefore obliged to abide by the provisions of the engineer.

5-2.6 Internal /Utility Services

i) Plumbing System Water Supply
The internal water supply is split into two – cold water system and hot water system. Since the supply is under pressure, the whole water supply system is designed leak proof and has valves to control the flow of water. To ensure reliable water supply, the plant will have adequate storage to cushion against unforeseen water shortage – 100,000 litres of water stored for the plant.

ii) Waste Water Drainage
The wastewater drainage system consists of both drain and vent pipes. These pipes also incorporate traps, gullies and other assorted fittings. The sewer plumbing will mainly be single stack, single-vent type. The development does not provide for air conditioning installation since the construction will be well ventilated, sufficient for natural air circulation.

ii) Electrical System
The installation of electrical wiring and fittings will cater for lighting, appliances, heating and cooling system. The installation will also cater for internal communication, telecommunication and alarm system. All installations shall be to Kenya Power and Lighting Company approval.

5-2.7 External Works

i) Driveway, Walkway and Parking
Paved driveway, parking and walkways shall be constructed to give motor vehicle and pedestrian traffic proper surface on which to move. The sub-grade will be made up of compacted quarry stone chippings and the sub-base will be of natural gravel and the base shall be 150 mm thick hand-packed hard quarry stone. The road surface shall be 50 mm thick standard cabro paving blocks.

ii) Water Supply
The development will be connected to a borehole available on site for water supply.

iii) Foul Water Drainage
The plants development will be connected to a septic tank and soak pit. Liquid waste will be directed to the septic tank with a soak pit to be constructed to engineers specification, hence increase the efficiency of the septic tank.

iv) Surface Water Drainage
Surface run-off from the proposed development site will collect in an open drain 300 mm wide and 600 mm deep and with steel grating cover. The drain will discharge onto an open main storm water drain along the local access road which will be harmonized with design drainage of neighbouring premises. The storm water can be used for irrigation of
lawns and flower gardens within the plants’s compound. Alternatively harvest roof water and do not mix with waste water from washings and washrooms.

v) Solid Waste Disposal

The plant will have a cubicle for storage of solid waste which is to be provided next to the access gate. The storage capacity is one week and waste will then be collected by the County government of Kajiado and/or NEMA licensed private contractor for final disposal.

vi) Landscaping

The site is to be landscaped to plan. This will entail planting of selected trees species, shrubs, grass and related ground cover in top soil. The top soil will also be treated with manure and/or fertilizer where necessary to encourage faster and improved plant growth. The common lawn/garden will be planted with continuous bed of grass lawn and provide aesthetically pleasing view. To enhance aesthetics, trees will be planted along the fence line of the plot and care taken not to introduce invasive species through consultation with the local KFS office to create a green belt.

vii) Gate

Access is to be provided on the local access road.

viii) Clearing of Site

The site will be given a general cleaning, and any left-over material and debris will be carted away. Similarly, any tools and equipment still on site will be removed.

5-3.1 Construction Procedure

5-3:1.1 Appointment of Contractor

The proponent will appoint a competent registered contractor to construct the various infrastructure characterizing the proposed Steel processing plant.

5-3:1.2 Construction Supervisor

During the construction phase, the proponent through his consultants will ensure close supervision so as to make sure that:

a) A construction site plan indicating where different construction and installation activities such as concrete mixing, stone dressing and others will be carried out in drawn and adhered to.

b) Traffic signs including movement of heavy vehicles are put up on roads in the zones

c) Safety signage that convey warnings against potential hazards are put up and remain within the construction site

d) Hoarding of areas undergoing demolition and farming possible foot paths that are within 2 meters from the construction site to prevent any damage to the adjoining environment. The hoarding should be 2.4m high galvanized iron sheets

e) Workers put on safety gears at all times (including dust masks, hand gloves, helmets, safety boots with metal tipped toes and hardened soles to prevent injury from prickle of sharp objects, safety harnesses, ear muffs, overalls and dust coats).
f) Workers operating vibrating equipment (e.g. air compressors) put on ear muffs and protective goggles.
g) Equipment are checked and certified to ensure that they are competent, in good working condition and safe to use
h) Dust is reduced to minimum by constant watering
i) Well stocked First Aid kit and firefighting equipment (fire extinguisher water hydrants and sand buckets) are provided and placed at strategic positions that are easily accessed
j) Emergency response procedures are put in place and all workers trained in them. Emergency contact details should be clearly displayed

5-4 Final Inspection and occupation

Final inspection will be undertaken to ensure that the project has been done properly and according to the terms of the contract. The inspection team will normally include the project proponent/client, the architect, the engineer and the contractor or their representatives and the County inspection team. The inspection will normally begin at the bottom of the construction to the top and look at and inspect every detail of construction, functioning of mechanical and electrical installations etc. The inspection team shall prepare a punch list indicating the items that need to be corrected. The list will be given to the contractor for necessary action within a specified period. If no new defects are noted, the job will officially be completed. A plant inspection report and certificate of occupation will subsequently be issued. In issuing the certificate of occupation, the inspection will take into account health and safety considerations of intended occupants. Upon certification of the building for occupation, and upon receipt and consideration of necessary legal and other relevant documentation from the contractor, the project proponent will file a formal ‘Notice of Completion’. The project will then be handed over to the proponent.

5-5 Environmental auditing

The project proponent will carry out an initial environmental audit and Annual Environmental Audit for the project activities as provided for in the Environmental (Impact Assessment and Audit) Regulations 2003. The Audits will serve to confirm the efficacy and adequacy of the proposed Environmental Management Plan.

5-6 Decommissioning

Decommissioning of the project once the project cycle comes to an end or when it has outlived its usefulness and will be demolished. The decommissioning of the plants building will involve the following:

a. Demolition and removal of all concrete works, metal works and furnace and associated structures
b. Demolish and remove all the sanitary utilities (sewerages lines and manholes)
c. Demolish and remove all wooden and roofing materials
d. Carefully remove all the electrical fittings and associated cables
e. Ensure proper handling of debris and other materials
f. Ensure authorized and guided transportation and disposal away from the project site
g. Reuse, recover and recycle any useful demolition materials
h. Disposal of the remnant oils properly
5-7 PROJECT BUDGET

5-7.1 Overview
The total project cost is estimated at Ksh. 25,000,000.

5-7.2 Capital Investment Costs
The main capital investment costs relate to:
- Land
- Site preparation
- Purchase and installation of the Steel plant system
- Building structures and support facilities
- External / site work – access road, landscaping, water supply, power supply and waste management system etc.

The approximately 2.02 hectares is valued at approximately Ksh. 10,000,000.

5-7.3 Professional Fees and Labour Costs
The project involves lawyers, town/physical planners, environmental experts, architects, engineers, quantity surveyors etc. It is estimated that 30% of the project development cost will be allotted for labor charges. Labour force of 150 casual workers and 8 permanent staff will also be employed. The total professional fees and labour costs is estimated at Ksh. 7,500,000.

5-7.4 Cost of Materials
Cost of construction materials is estimated to take 70% of the total development cost. This can be therefore approximated at about Ksh. 17,500,000.

5-7.5 Project Time Schedule
The whole project cycle from inception, planning and design, and construction is estimated to take 12 months.

5-7.6 Financing
The proposed project will be financed from both private savings and bank loan facility.

5-8 PROJECT MATERIAL AND PRODUCTS

5-8.1 Project Material and Inputs
The raw material that will be used in the production of hot rolled steel products is billets. A billet is a length of metal that has a round or square cross-section, with an area less than 36 square inch (230 cm²). The billets that will be used at the RSD will be imported.

7.3.1.2 Inputs Industrial Diesel Oil (IDO), furnace oil, electricity, water, oils and lubricants will be the necessary process inputs. IDO will be the fuel used for hot rolling in the rolling mill; furnace oil will be used for heating the furnace, electricity will power the entire mill, water will be a coolant.
for the mill will oils and lubricants will lubricate the plant and equipment. In summary, the main material input in the project include –
- Raw material including Iron ore, limestone, coal and coke.
- The Complete plant components
- Underground oil storage tanks
- Water tanks
- Generator
- Masonry stone and Expanded polystyrene (E Ps) panels
- Sand
- Cement
- Crushed stone
- Gravel
- Soil
- Timber
- Steel (reinforcement, casement, wiring, pipe etc)
- Glass
- PVC material (tiles pipes, conduits and fittings)
- Concrete tiles and paving blocks
- Paint
- Plant material – grass, tree seedlings etc.
- Water

5-8.2 Project Products

The main products that will be generated from steel processing will be hot steel product namely angles, zed section, tee section, flat bars. Other products from the project are –
- A fully equipped Steel processing plant
- Administration block
- Security office
- Parking lot
- Septic tank and soak pit
- Washrooms
- Paved driveway, walkway and car parking spaces
- Landscaped site planted with grass, shrubs and tree cover
- Increase surface water runoff
- Increased foul water discharge
- Increased solid waste generation
- Increased resident population
- Increased traffic (motor vehicle and pedestrian)
6.0 LEGAL, POLICY AND INSTITUTIONAL FRAMEWORK

6-1 Legal and Policy Framework

The relevance of the aforementioned legislations as well as policy papers (national and international) and institutional framework related to the proposed development are discussed in the following sections:

6-1.1 The Constitution of Kenya, 2010

In chapter four, Article 42, it is clearly stipulated that every person has the right to a clean and healthy environment which includes the right:

a. To have the environment protected for the benefit of present and future generations through legislation and other measures, particularly those contemplated in Article 69
b. To have obligations relating to the environment fulfilled under article 70

Part 1 of the chapter dwells on land, outlining the principles informing land policy, land classification as well as land use and property. The second part of this chapter directs focus on the environment and natural resources. It provides a clear outline of the state’s obligation with respect to the environment, thus;

The state shall

- Ensure sustainable exploitation, utilization, management and conservation of the environment and natural resources, and ensure the equitable sharing of the accruing benefits;
- Work to achieve and maintain a tree cover of at least ten per cent of the land area of Kenya;
- Protect and enhance intellectual property in, and indigenous knowledge of, biodiversity and the genetic resources of the communities;
- Encourage public participation in the management, protection and conservation of the environment;
- Protect genetic resources and biological diversity;
Establish systems of environmental impact assessment, environmental audit and monitoring of the environment;

- Eliminate processes and activities that are likely to endanger the environment; and

- Utilize the environment and natural resources for the benefit of the people of Kenya.

In conformity with the Constitution of Kenya, 2010, every activity or project undertaken within the republic must be in tandem with the state's vision for the national environment as well as adherence to the right of every individual to a clean and healthy environment.

Relevance to Project.

The proponent will safeguard all the rights of the citizens as enshrined in the constitution in executing the project. The proponent will also ensure environmental considerations are mainstreamed into all phases of the project cycle.

6.1.2 **The Physical Planning Act (Cap. 286)**

The Physical Planning Act (Cap. 286), which commenced on 29th October 1998, aimed at developing a sound spatial framework for co-existence, through plan proposals that enhance and promote intergraded spatial/physical development of socio-economic activities. Because building/construction constitutes making of material change to land, the activity constitutes “development”, hence need to be controlled by local authorities. From the foregoing, the Physical Planning Act (Cap. 286) has made specific provisions in respect to the mandate of local authorities in the need for physical planning. As concerns, city, municipal, town and urban councils:

- Section 24(1): The Director may prepare with reference to any Government land, trust land or private land within the area of authority of a city, municipal, town or urban council or with reference to any trading or marketing center, a local physical development plan.

- Section 24(3): the Director may prepare a local physical development plan for the general purpose of guiding and co-coordinating development of infrastructure facilities and services for an area referred to in subsection (1), and for the specific control of the use and development of land or for the provision of any land in such area for public purpose.

- Section 25(b): a local physical development plan shall consist of such maps and description as may be necessary to indicate the manner in which the land in the area may be used

According to Section 33 of the Physical Planning (Building and Development Control) Regulations, the Director of Physical Planning shall refuse to recommend any new building or proposed development, or alteration or addition to any existing building if:

- The proposal is not in conformity with approved development plan

- Such plans disclose a contravention of the physical planning (Building and Development) rules

- The plans are not correctly drawn or omit to show information required

- On such being required, a separate application accompanied by sets of plans has not been lodged in respect of buildings on separate plots or subplots
- The land or the proposed building or structure is not used for any purpose which might be calculated to depreciate the value of neighboring property or interfere with convenience or comfort of neighboring occupants
- The proposed building or land use is unsuitable, injurious to amenities or detrimental in respect of appearance or dignity or fails to comply with physical planning requirements in regard to sitting, design, height, elevation, size, shape, structure or appearance
- The development is likely to become objectable on environmental grounds
- Roads of access, parking bays, vehicular and pedestrian circulation spaces or other services to the plot or premises are inadequate
- The building is not sited in a satisfactory position.
- The system of drainage, including soil, waste and surface water of the plot, or subplot upon which the building is to or stand, is not satisfactory
- Provision has not been made for adequate natural light and ventilation, or
- Any other physical planning issue

Section 36 of the Act (Cap. 286) further compels that if in connection with a development application, a local authority is of the opinion that proposals for industrial location, or any other development activities (such as building developments) will have injurious impact on environment, the applicant will be required to submit together with application an environmental impact assessment report. The above provision compares well to Section 29 (a), which confers upon local authorities the powers to prohibit or control the use and development of land and buildings in the interests of proper and orderly development of its area. The proposed development is an area with similar developments and therefore the proposed project fits in the proposed site and zone. The proponent has reached the requisite approval under this Act.

Relevance to project.
The proposed development is an area with similar developments and therefore the proposed project fits in the proposed site and zone. The proponent has reached the requisite approval under this Act.

6-1.3 The Environmental Management and Coordination Amendment Act 2015, CAP 387.
The Environmental Management and Coordination Act (EMCA) 2015 CAP 387, and its attendant Environmental (Impact Assessment and Audit) Regulations of 2003 amended 2016, provides for the establishment of an appropriate legal and institutional framework for the management of environment in Kenya. The Act introduces two important aspects of urban environmental management, which are directly related to the proposed project: environmental impact assessment (EIA) and environmental audit (EA). Section 58 (I) has underscored that any person being a proponent of a project shall before financing, commencing or proceeding with submit an EIA report to the National Environmental Management Authority (NEMA) of Kenya. Section 68 (I) gives NEMA the mandate for carrying out all environmental audits of all activities that are likely to have significant impacts on the environment. It authorizes environmental inspectors, as appointed by NEMA to enter in any premise and determine how far the activities carried out conform to statements in EIA study. The proponent in preparing this EIA report complies with the
requirements of EMCA and expects to receive the EIA license on NEMA’s evaluation of the report.

Relevance to project.

The proponent in preparing this EIA report complies with the requirements of EMCA and expects to receive the EIA license on NEMA’s evaluation of the report. At the expiry of one year into the operation of the project, the proponent will submit an Initial Environmental Audit report to NEMA to test the efficacy of the EMP developed during the project cycle.

6-1.4 The Public Health Act (Cap. 242)

Environmental degradation may pose a health hazard to the general public. This is among the factors considered by the Public Health Act to constitute “nuisance”. For the interpretation of the Act, Section 15 (IX) indicates that any noxious matter or wastewater discharged from any premise, such as a building constitutes nuisance. Any premise not kept in a clean and free from offensive smell such as gases which are injurious to health such as those from commercial establishments shall therefore generate nuisance. The Act therefore stresses that no person shall cause a nuisance to exist on any land or premise occupied by him. Because of the above, the Act acknowledge that it shall be the duty of all local authorities to take all lawful measures for maintaining its district at all times in a clean and sanitary condition for remedy of any nuisance or condition liable to be injurious to health. To safeguard against this, Part X of the Public Health Act states that where in the opinion of the Medical Officer of Health that food stuffs within a warehouse, or a building are insufficiently protected, the owner shall be compelled to observe the required regulations, else he/she shall be guilty of an offense.

Relevance to project.

The proponent has acquired the requisite approvals from the Public Health Department for the project and shall ensure high standards of sanitation are maintained throughout the project life cycle and will comply with any instructions that may be provided by the Public Health Department for continuous improvement.

6-1.5 Weights and Measures Act, CAP 513.

This is the principal Act dealing with weights and measures in Kenya, it defines the standards and units to be used and the regulations to be adhered to. Section 20 makes it an offence for any person to use or possess or control for use for trade a weighing or measuring instrument not constructed to indicate in terms of weight or measure as authorized by the Act. The next section (section 21) prohibits use for trade any weight, measure, weighing or measuring instrument which is false or unjust. It further requires that the weights, measures, weighing or measuring instrument used for trade be examined, verified, stamped or re-stamped at least once in every year- section 27(1) and a certificate of verification be issued -section 27(7). It is under the provisions of this Act that the plant system must be examined and verified for their accuracy at least once in a year. Failure to do so is an offence under the Act.

6-1.6 The County Government Act of 2012

The local government act was repealed after the final announcement of all the results of the first elections held under the Constitution as per the County Governments Act of 2012. Under section
134 subsection (1), The Local Government Act is repealed upon the final announcement of all the results of the first elections held under the Constitution. It further states in section 134, subsection (2) reads “All issues that may arise as a consequence of the repeal under subsection (1) shall be dealt with and discharged by the body responsible for matters relating to transition”.

The project will according to the County Government act of 2012 ensure that the project activities conform to the regulation that shall be passed.(Section 135 (1) The Cabinet Secretary may make regulations for the better carrying out of the purposes and provisions of this Act and such Regulations may be made in respect of all county governments and further units of decentralization generally or for any class of county governments and further units of decentralization.) comply to the set regulations and by laws. This is the primary law governing the development of counties and thereby will be key during implementation of the project. The proponent ensured that all organs established under this law have been consulted and approvals sought from the relevant authorities in relation to the County Government of Kajiado. The proponent has obtained the necessary approvals by the relevant county departments.

Relevance to project.
The proponent has obtained letters of authority from the County Government of Kajiado to commence development. Development Plans have also been approved by the County Government prior to commencing the construction and commissioning of the project.

6-1.7 The Occupation and safety Health Act, 2007

The main objective of the Act is to secure the safety, health and welfare of the persons at work and to protect persons other than persons at work against risks to safety and health arising out of or in connection with the activities of persons at work. It assigns duties and liabilities to employers, employees and public in order to facilitate this and promote healthy work environments subsequently enhancing outputs ergonomically. Under part (ii) of the Act the duty of occupiers in section 6(i) is to ensure the safety, health and welfare at work of all persons working in his workplace, sub section (2)(a) to (g) outlines specific duties under section 6(i). These include provision of personal protective equipment (PPEs), preventing risks, information, notifications and maintenance of places of work. Sub section 3 stipulates that occupiers must carry out risk assessment and section 4 requires that the proponent sends a copy to the occupational health and safety officer in the area. Section 13 (a) to (g) also stipulates the duties of the employee in efforts to ensure that he/her safety and health is guarantee at the place of work. Section 21 gives the procedure and duty of giving notices of accidents and dangerous occurrences.

In case of any accidents during the project cycle, this Act will guide the course of action to be taken by the proponent and the project contractor.

Relevance to project
All personnel working at the site during installation, operation or possible decommissioning of the plant shall be provided with appropriate Personnel Protective Equipment (PPE) and their use enforced.

This provides for compensation to employees for work related injuries and diseases contracted in the course of employment. The proponent must comply with the provisions of this legislation with regard to the above Act at the proposed premises.

6-1.9 The Building Code, 2000

In recognition of the role of local authorities as lead planning agencies, the adoptive by-law compels any potential developer to submit development application to relevant local authority for approval. The local authorities are empowered to disapprove any plan submitted if it is not correctly drawn or do not provide sufficient information that complies with the by-law. Any developer, who intends to erect a building, must give the concerned local authority a notice of inspection, before the erection of the structure. After erecting the building, a notice of completion shall be issued to the local authority to facilitate final inspection/approval. No person shall therefore occupy a building whose certificate of completion has not been issued by the local authority. As a precaution against fire breakout, the by-law states that the walls of any premise shall be non-combustible throughout, similarly, in every building, other than a small house, which comprises more than one storey, shall have fire resistance. The by-law, in Section 214 indicates that in any public building where floor is more than 20 feet above the ground level, the council may recommend the provision of fire-fighting equipment that may include one or more of the following: hydrants, hose reels and fire appliances, external conations, portable fire appliances, water storage tanks, dry risers, sprinkler, drencher and water spring protector system. The proponent has acquired all approvals for the architectural and structural engineering drawings as attached in the appendix.

Relevance to project.
The proponent has acquired all approvals for the architectural and structural engineering drawings as attached in the appendix.

6-1.10 The Penal Code (Cap. 63)

The chapter on “Offences against Health and Conveniences” contained in the Penal Code enacted in 1930 strictly prohibits the release of foul air into the environment, which affects the health of other persons. Any person who voluntarily violates the atmosphere at any place, to make it noxious to health of persons in general dwelling or carrying out business in the neighborhood or passing along public ways is guilty of misdemeanor, i.e. imprisonment not exceeding two years with no option of fine. Under this code, any person who for the purpose of trade or otherwise makes loud noise or offensive awful smell in such places and circumstances as to annoy any considerable number of persons in the exercise of their rights, commit an offence, and is liable to be punished for a common nuisance, i.e. imprisonment not exceeding one year with no option of fine. The proponent has planned for waste treatment mechanism to avoid release of foul air and water into the environment.

Relevance to project.
The proponent has planned for waste treatment mechanism to avoid release of foul air and water into the environment.

6-1.11 The Way leave Act
The areas zoned for communication lines, sewer lines, power lines, water pipes etc. are known as way leaves. The way leave Act prohibits development of any kind in these designated areas. Thus any developer is bound by this Act to see to it that no development takes place in these areas. The proposed project will not encroach on any way leave and will leave the required space for such services.

6-1.12 The Water Act, 2016

Part II, section 18, of the Water Act, 2016 provides for national monitoring and information systems on water resources. Following this, sub-section 3 allows the Water Resources Authority (WRA) to demand from any person or institution, specified information, documents, samples or materials on water resources. Under these rules, specific records may require to be kept by a facility operator and the information thereof furnished to WRA.

Section 73 of the Act allows a person with a license (licensee) to supply water to make regulations for purposes of protecting against degradation of water sources. Section 75 and subsection 1 allows the licensee to construct and maintain drains, sewers and other works for intercepting, treating or disposing of any foul water arising or upon land for preventing of pollution of water sources within his/her jurisdiction. The waste water regulation, 2006 states that; No person shall abstract ground water or carry out any activity near any lakes, rivers, streams, springs and wells that are likely to have any adverse impact on the quality or quantity of the water without an EIA license issued.

Relevance to project.
The proponent will ensure water connection from Isinya water supply line, access borehole water and harvest rain water. The proponent will as well ensure proper management of effluent, sewage and solid wastes to avoid any potential contamination of water resources.

6-1.13 The Environmental Management and Coordination (Water Quality) Regulations

These regulations enacted in 2006 were formulated with the aim of protecting water sources from pollution and setting the standards for wastewater disposal. Section 12 (1) requires that every in local authority, a person operating a sewerage system or owner or operator of any trade or industrial undertaking obtain an effluent discharge license as stipulated under the EMCA and shall comply with the standards set out in the third and fourth schedule to these regulations. A discharge monitoring record shall be maintained. Any person discharging wastewater into public sewer or aquatic ecosystem is required to obtain a discharge license and regularly monitors quality of effluent. The proponent will not discharge any waste water into the environment and will endeavour to seek services of NEMA licensed operator when necessary.

Relevance to project
The proponent will provide a regular exhausting service of waste water treatment system for managing both effluent and sewage from the plant. The proponent will not discharge any waste water into the environment and will endeavour to seek services of NEMA licensed operator when necessary.

6-1.14 The Traffic Act (CAP 403).
The act it prohibits obstruction of traffic, either by persons or facilities constructed in such a way as to interfere with the flow of traffic on roads or road reserves. The law also regulates the quality of exhaust emissions from such mobile vehicles.

Relevance to project.
The proponent will liaise with the traffic police to temporarily control traffic if need be.

This National Industrialization policy framework has been developed through a consultative process involving the public sector, private sector, civil society, development partners and non-governmental stakeholders. It takes into cognizance the Vision 2030 aspirations; current status of the Kenyan economy; changes and development in the global economy; challenges of the industrial sector; and opportunities arising therefrom. It also takes into account some of the lessons learnt and best practices from Newly Industrialized Countries (NICs). This policy is aligned to the Kenya Vision 2030 which aspires to transform Kenya into a middle income rapidly-industrializing country, “a globally competitive and prosperous nation, offering a high quality of life to all its citizens” in a secure and healthy environment. It envisions to making Kenya be the leading industrialized nation in Africa with a robust, diversified and globally competitive manufacturing sector.

On the metal sub-sector, the policy recognizes that the industrialization of any nation is largely dependent on the availability and affordability of iron and steel. It has been established that vast amounts of iron ore reserves exist in several locations in Kenya, including: Meru, Ikutha, Taita, Embu, Lolgorien, Samburu, and Funyula districts. There are also smaller deposits in various parts of Nyanza, Western and Coastal regions including pyritic ores in Bukura area, limonitic ores on Lugulu Hill south of Sio and and goethite ore on Mrima Hill in Kwale. The second main ingredient in iron and steel production is coal which has also been reported to be in Mwingi and Kitui districts. The third main ingredient in the iron and steel production is limestone, which occurs in various parts of the country including Mutomo, Kajiado, Taita, Pokot, Baringo among other areas.

In pursuit of the need to grow and expand the potential that is inherent in the iron and steel industry in Kenya, it is proposed that the following policy measures be pursued:

1. Establish a sub-committee of the proposed National Industrial Development Commission to deal exclusively with the development of steel and iron.
2. Rationalize the tariffs and any other anomalies within the industry to ensure local competitiveness and value addition in the development of down-stream industries, including machine tool industry, forging industry, agro machinery and motor vehicle assembly.
3. Establish the types, location, quantities and qualities of iron, coal and limestone in the country.
4. Establish a mini-steel plant.
5. Develop an institutional framework to promote development of iron and steel mills industries in the country, within the framework of Kenya Vision 2030
6. Establish a coal power generation plant.
7. Impose a ban on export of scrap metal and iron ore.
8. Promote stockpiling of the iron ore and limestone while initially exploring ways of mining the coal and producing the coke.
NB: And whenever any of the laws contradict each other on matters of environmental conservation the EMCA act CAP 387 prevails.

OTHER POLICY DOCUMENTS AND INTERNATIONAL TREATIES.

6-1.16 The World Commission on Environment and Development

The commission commonly referred to as “the Brutland Commission” focused on the environmental aspects of development, in particular, the emphasis on sustainable development that produces no lasting damage to biosphere, and to particular ecosystems. In addition, environmental sustainability is the economic and social sustainability. Economic sustainable development is development for which progress towards environmental and social sustainability occurs within available financial resources. While social sustainable development maintains the cohesion of a society and its ability to help its members work together to achieve common goals, while at the same time meeting individual needs for health and well-being, adequate nutrition, and shelter, cultural expression and political involvement.

6-1.17 The Rio Declaration on Environment and Development

Agenda 21 – a programme of action for sustainable development worldwide, the Rio Declaration on Environment and Development was adopted by more than 178 governments at the United Nations Conference on Environment and Development, known as the Earth Summit, held in Rio de Janeiro, Brazil from 3rd to 14th June 1992. Principle No. 10 of the declaration underscored that environmental issues are best handled with participation of all concerned citizens at all the relevant levels. At the national level, each individual shall have appropriate access to information that is concerning environment that is held by public authorities, states shall encourage and facilitate public participation by making information widely available. Effective access to judicial and administrative proceedings, including redress and remedy shall be provided. The foregoing discussion is relevant to the proposed development because EMCA CAP 387 demands that public must be involved before any development project that is likely to have adverse impacts to the environment is initiated by a proponent. The Act has further established Public Complaints Committee (PCC) where the issues raised by the public in regard to any proposed development can be addressed.

6-1.18 Sessional Paper No. 6 of 1999 on Environment and Development

Every person in Kenya is entitled to a clean and healthy environment and has a duty to safeguard and enhance the environment (Kenya, 1999). As envisioned in Sessional Paper No. 6 of 1999 on Environment and Development, Kenya should strive to move along the path of sustainable development to meet the needs of the current generation without compromising the ability of the resource base to meet those of future generations. The overall goal is hence to integrate environmental concerns into the national planning and management processes and provide guidelines for environmentally sustainable development (Kenya, 1999). The policy paper emphasized environmental impact assessments must be undertaken by the developers as an integral
part of a project preparation. It also proposed for periodic environmental auditing to investigate if developer is fully mitigating the impacts identified in the assessment report.

6-1.19 The National Environmental Action Plan (NEAP)
The NEAP for Kenya was prepared in 1994. It was a deliberate policy to integrate environmental considerations in to the country’s social and economic development process. The integration was achieved through multi-sectoral approach to develop a comprehensive framework to ensure that environmental management and conservation of natural resources is an integral part of societal decision-making process.

6-1.20 The National Shelter Strategy to the Year 2000
This strategy followed the International Year of Shelter for the Homeless in 1987 and was formulated to advocate a change in policy in order to allow other actors to come in and assist the Government in providing housing. The Government was to simply facilitate other actors such as for the proposed housing developers to invest in shelter and hence requires use of steel.

6-1.21 The National Poverty Eradication Plan (NPEP)
The NPEP has the objective of reducing the incidence of poverty in both rural and urban areas by 50% by the year 2015; as well as strengthening the capabilities of the poor and vulnerable groups to earn income. It also aims to narrow gender and geographical disparities and create a healthy, better-educated and more productive population. This plan has been prepared in line with the goals and commitments of the World Summit for Social Development (WSSD) of 1995. The plan focuses on the four WSSD themes of the poverty eradication; reduction of unemployment; social integration of the disadvantaged people and the creation of an enabling economic, political, and cultural environment. This plan is to be implemented by the Poverty Eradication Commission formed in collaboration with Government ministries, community based organizations, and private sector such as the proposed development will create employment opportunities for Kenyans, hence contributing to poverty eradication.

6-1.22 The Poverty Reduction Strategy Paper (PRSP)
The PRSP has the twin objectives of poverty reduction and economic growth. The paper articulates Kenya’s commitment and approach to fighting poverty; with the basic rationale that the war against poverty cannot be won without the participation of the poor themselves. The proposed project during and after implementation, will offer jobs to many Kenyans as a way of contributing to this noble objective of reducing poverty in the nation.

6-2 Institutional Framework
The environmental impact assessment for the proposed development is bound to be influenced by the operational interests of several lead agencies, whether exclusively or concurrently. These include, but not limited to the following key institutions:
6-2.1 County government of Kajiado.

This is the principle lead agency in all matters pertaining to planning within the Kajiado County. The County Government Act (Cap 103) requires counties to facilitate the development of a well-balanced system of settlements and ensure productive use of scarce land, water and other resources for economic, social, ecological and other functions across a county; The Physical Planning Act (Cap 286) also confers upon local authorities the powers to control development in their areas of legal jurisdiction. Accordingly, Section 29 (a) has granted all local authorities in Kenya, the County government of Kajiado being no exception, the power to prohibit or control the use and development

6-2.2 National Environment Management Authority (NEMA)

In 2002 the government created the National Environmental Management Authority (NEMA) as the supreme regulatory and advisory body on environmental management in Kenya. NEMA is required to coordinate and supervise the various environmental management activities being undertaken by statutory organs with a view to promoting their integration into development policies, programmes, plans and projects that provide sustainable development and a safe and healthy environment to all Kenyans. The key functions of NEMA through the National Environment Council include: responsibility for policy formulation and direction for the purposes of the Act; setting national goals and objectives and determining policies and priorities for the protection of the environment; promotion of cooperation among public departments, local authorities, private sector, non-governmental organizations and such other organizations engaged in environmental protection programmes; and perform such other functions as are assigned by the Act.

NEMA will remain in charge of coordinating all activities related to environmental management in the project area, such as enforcement of environmental impact assessments, as well as environmental audits and undertake environmental inspections as it deems necessary in carrying out its mandate.

6-2.3 Director of Physical Planning

The Physical Planning Act (Cap 286) established the office of the Director of Physical Planning. The duties of the Director of Physical Planning shall include the following:
- Formulate national, regional and local physical development policies, guidelines and strategies
- Be responsible for the preparation of all regional, local and national physical development plans
- From time to time, initiate, undertake or direct studies and research into matters concerning physical planning
- Advise the Commissioner of Lands and local authorities on the most appropriate use of land including land management such as change of user, extension of user, extension of leases, subdivision of land, and amalgamation of land, and
- Require county authorities to ensure proper execution of physical development control and preservation orders.

6-2.4 Energy and Petroleum Regulatory Authority
The Energy and Petroleum Regulatory Authority (EPRA) is established as the successor to the Energy Regulatory Commission (ERC) under the Energy Act, 2019. The Authority is responsible for the economic and technical regulation of the electric power, renewable and petroleum sub sectors. Its role of in the Petroleum Subsector as provided by the Energy Act 2019 include:

1. Review of government policy on petroleum.
2. Governing the petroleum sector with focus on licensing, issuing of construction permits, developing standards for bulk petroleum transportation and petroleum costs and prices monitoring.
3. Take the lead in the formulation, review and enforcement of rules, regulations and codes for the petroleum sector.
4. Identifying gaps in EHS and developing interventions to address the gaps to ensure that EHS clearly understands standards and rules that it is expected to regulate. This will include the review and enhancement of existing standards.

6.2.5 Neighborhood Associations and/or General Public

The proposed steel processing plant development project is likely to attract the interests of the area’s neighborhood association(s)/general public. An extensive public participation hence formed a major component of the study. From the foregoing, particular reference is made to Section 17 of the Environmental (Impact Assessment and Audit) Regulations, 2003, which states that:

…The proponent shall in consultation with the authority, seek the views of persons who may be affected by the project…

The above expression clearly underscores the concept of “participatory environmental planning and management” in the context of urban development.

6.3 Conclusion

The institutions guided by relevant policies and legislations must regulate urban development and planning projects. The above expression is envisioned as a basic principle component of coordinated and harmonious development in urban areas, and is one of the core pillars for attaining sustainable development. These provisions will therefore guide the proposed project.
7.0 PUBLIC CONSULTATION AND PARTICIPATION

7.1 Legal Requirement

During the field survey for the proposed development of a Steel Processing plant, public consultation formed an integral part of project development. This was done pursuant to the Environmental Management and Coordination Act CAP 387. Section 17 of the Environmental (Impact Assessment and Audit) Regulations of 2003 amended 2016, requires that all E&SIA Studies incorporate Public Consultation (PC). The aim of the PC is to ensure that all stakeholders interested in a proposed project (including project beneficiaries and the general public in the vicinity of the proposed project) are identified and their opinion considered during project planning, design, construction, operation and decommission phase.

7.2 Overview.

Community Consultation and Public participation is a key part that aims at involving the public in the project development and implementation. The main aim of public participation is to ensure a participatory approach in development which ensures acceptability of the project by the community and neighbours and any uncertainties addressed. For this proposal public participation conducted involved: enlightening the public on the proposed development documenting their opinions and views from the meeting.

During the writing and preparation of this ESIA on the proposed project site, the project team and experts visited the site and assessed the suitability of the site to the proposed project. The team and ESIA expert also visited the community and held consultative meeting with more than 30 community members and neighbours about the proposed project. The minutes of the meeting together with photos and attendance list are provided in this brief report and is annexed at the end of the ESIA final report.

Further consultation was done through the use of 70 semi structured questionnaires that were randomly given to the area residents around the nearest neighborhood 0.5-2km away. The respondents were mainly residents or villagers and had resided in the area for a period of between 2 months-37 years. Out of those interviewed, 2% were not aware of the proposed project while 98% were aware of it. Mostly, the respondents had the same views on the impacts associated with the development, however, some respondents had different opinions of importance that would arise as a result of the implementation of the proposed project development. The perceived benefits were as follows:

- The proposed development will provide steel products to the county and country at large.
- The proposed development would create employment opportunities to the local community.
- There will be improved aesthetic and development in the area
- The already existing businesses will have a boost from workers in the proposed project site.
- Optimal use of land area.
- The project will open up the area for more developments
- As an obligation of corporate social responsibility (CSR), the proponent promised to further initiate and fund community projects either in water, health or education sector.
The respondents also cited the following as possible problems or negative impacts which could arise from the proposed project:

- Generation of dust temporarily during construction phase
- Solid and liquid waste generation and management
- There will be noise pollution arising from the construction activities which are mainly movements by the trucks.
- There will be air pollution arising from dust particles emitted during site preparation and construction and operation phase.
- The project will require huge water volumes which might lead to water shortage
- Accidents resulting from falls in the open grounds during or after the project operations are complete.

The respondents gave the following as possible mitigation measures to reduce or prevent the problems and impacts:

- The proposed project site should be well fenced around and signs indicating a construction going on mounted to condone the area from unauthorized trespassers.
- Collection and appropriate disposal of solid waste and construction debris from the construction works and materials.
- The site should be watered to prevent too much dust during construction and transportation by trucks.
- Use of less noisy machines and equipment; there should be no blasting.
- The workers should be provided with personal protective gear during the operations.
- Ensure that the site development operations are carried out during the day.
- Enhanced monitoring and control of vehicular movement
- Put bumps on the roads to avoid accidents.
- No use of vibrant explosives at the site.
- Ensuring construction work is undertaken during the day
- Training and awareness of construction workers and staff on safety precautions.
- Transport and storage of materials in bulk to avoid making of many trips
- Water harvesting and solar power utilization
- Adequate and properly designed waste/grey water treatment and disposal system

Overall, the respondents recommended the implementation of the project.

7.3 GRIEVANCE REDRESS MANAGEMENT (GRM).

Grievance redress Mechanism (GRM) is a critical component of effective ESMP implementation. The purpose of GRM is to provide a forum to the internal and external stakeholders to voice their concerns, queries and issues with the project. Such a mechanism would provide the stakeholders with one project personnel or one channel through which their queries will be channeled and will ensure timely responses to each query.
This will allow for trust to be built amongst the stakeholders and prevent the culmination of small issues into major community unrest. The GRM will be accessible and understandable for all stakeholders in the project and for the entire project life. The GRM will be communicated to all relevant stakeholders and will also be applicable for any contractor that will occupy and/or use land during the construction and operations phase. This section contains the following:

- Grievance definition and categories and GRM principles;
- The process of receiving, documenting, addressing and closing grievances.

GRIEVANCE DEFINITION AND CATEGORIES

As stated earlier, a grievance is a concern or complaint raised by an individual or a group within communities affected by company operations. Both concerns and complaints can result from either real or perceived impacts of a company’s operations, and may be filed in the same manner and handled with the same procedure.

Grievances may take the form of specific complaints for actual damages or injury, general concerns about project activities, incidents and impacts or perceived impacts. Based on the understanding of the project area and the stakeholders, an indicative list of the types of grievances have been identified for the project, as can be seen below:

Internal Grievances: Grievances from Employees (including both direct and indirect employees, including local workers and migrant workers through contractors):

- Complaints pertaining to amount of wage, salary, other remuneration or benefits as per Company’s Human Resource policy;
- Timely disbursement of remuneration;
- Gender discrimination;
- Sexual harassment;
- Sexual exploitation and abuse by project workers against community members;
- Violence against children;
- Gender-based violence;
- Issues related to workers’ organization;
- Labour Accommodation;
- Health and Safety issues;
- Extended working hours.

External Grievances: Grievances from community members:

- Issues related to sexual exploitation and abuse;
- Issues related to gender-based violence at the community-level;
- Issues related to child labour and protection;
- Issues related to transportation and traffic;
- Increase in environment pollution;
- Impact on community health;
- Disturbances to locals due to influx of migrant workers in the area;
- Issues arising out of sharing of employment and business opportunity;
- Concerns over the impact on local cultures and customs; and

The list of grievances will be regularly updated as and when the new one arises.

INTERNAL GRIEVANCE MECHANISM – Project GRM

During consultations, it was revealed that the proponent will require a Community Liaison Officer (CLO) who will serve to meet all community liaison responsibilities. The officer will be tasked with the responsibility of ensuring the effectiveness in implementation of the grievance mechanism. The grievance mechanism will be advertised and announced to affected stakeholders so that they are aware of their rights to submit comments and how to go about it. The grievance mechanism will be founded on the following principles:

Responsibilities will be adequately assigned: A responsible person or team will be constituted and mandated to organize the resolution of grievances. This will enable the system run without undue impediments.

The process will be accorded due importance: It is important for affected communities and other stakeholder groups seeking to have their complaints resolved, to perceive the grievance management process as transparent and fair. The proponent grievance management process will enhance outcomes and give people satisfaction that their complaints have been heard, even if the outcome is less than optimal.

The grievance procedures will be readily understandable, accessible and culturally appropriated by the local population. From the outset, clarification will be made on who is expected to use this procedure. The people will be assured that there will be neither costs nor retribution associated with lodging a grievance. The entire process (from how a complaint is received and reviewed, through to how decisions are made and what possibilities may exist for appeal) will be made as transparent as possible through good communication.

The Mechanism will be scaled as needed for the Project: The proponent grievance mechanisms will be designed to fit the context and needs of the project. As much as possible, it will have relatively simple means of addressing complaints, such as through community meetings, community liaison personnel and suggestion boxes allowing for anonymity. It may also need a more formalized process and mechanism, and a higher level of dedicated resources for receiving, recording, tracking, and resolving complaints. The grievance mechanisms will not be taken as a substitute for community engagement process or vice-versa. The two are complementary and will be made mutually reinforcing. Not all grievances shall be handled in the same way. Proponent will consider creating different levels of redress within the grievance mechanism that correspond to the scale and seriousness of the complaint.
The process will be documented and publicized: The process will be put in writing and publicized. Proponent recognizes that the GRM cannot be effective if nobody knows about it. Thus the grievance procedures will be put into writing, publicized, and explained to relevant stakeholder groups. The people will be informed on where to go and whom to talk to if they have a complaint, and understand what the process will be for handling it. As with all information, it will be provided in a format and language readily understandable to the local population and/or communicated orally where its established that literacy levels are low. It will not be overly complicated to use nor will it require legal counsel to complete.

Independent third parties will be brought in where needed: Proponent recognizes that sometimes ensuring “fairness of process” for affected individuals or groups require certain measures to level the playing field of perceived power. Thus, at a minimum, the host communities will need to have access to information. Proponent will facilitate this by providing project-related information in a timely and understandable manner. In cases where significant imbalances in knowledge, power, and influence exist, it may wish to reach out to other partners to assist in the process. In terms of advocacy, an NGO might be brought in to assist local communities and advocate on their behalf. Where mediation is desired, academic or other local institutions may be sought out to play an “honest broker” role in mediating between the client and stakeholder groups. In certain circumstances, the client may consider providing funding for such third-party advice or facilitation in a way that is acceptable to all parties and does not compromise the integrity of the process.

The process will be made accessible: Projects that make it easy for people to raise concerns and feel confident that these will be heard and acted upon can reap the benefits of both a good reputation and better community relations. One of the best ways to achieve this is to localize your points of contact. Hire people with the right skills, training, and disposition for community liaison work and get them into the field as quickly as possible. Maintaining a regular presence in the local communities greatly helps to personalize the relationship with the company/farm and engender trust. Talking with a familiar face who comes to the village regularly, or lives nearby, creates an informal atmosphere in which grievances can be aired and sorted out, or referred up the chain of command. This is usually more convenient and less intimidating to people than having to travel distances to the company offices during business hours to file a formal complaint.

Response time will be defined and transparency upheld: Proponent will publicly commit to a certain time frame in which all recorded complaints will be responded to and ensure this response time is enforced. This will help allay frustration by letting people know when they can expect to be contacted by Proponent personnel and/or receive a response to their complaint. Combining this with a transparent process by which stakeholders can understand how decisions are reached will inspire confidence in the Proponent system. During critical times such as construction, will be immediate responses to time-sensitive complaints. A related issue is making sure that the community liaison officer has the authority to resolve basic complaints herself, as well as a direct reporting line to senior managers if the issue is more serious or costly to address.
Good record-keeping and feedback: A log book will be kept where necessary, and a sophisticated database will be maintained where required. Written records of all complaints will be kept as this is critical for effective grievance management. The record shall contain the name of the individual or organization; the date and nature of the complaint; any follow-up actions taken; the final result; and how and when this decision was communicated to the complainant. Overly personal data such as national identity and phone numbers will be optional and kept confidential unless required to disclose to authorities. In addition to informing the complainant of the outcome (in writing where appropriate), as part of the broader community engagement process Proponent will report back periodically to communities and other stakeholder groups as to how the company has been responding to the grievances it has received.

Table 0-1: Sample Grievance Recording Form

<table>
<thead>
<tr>
<th>GRIEVANCE REGISTRATION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE No.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Department/Contractor Name</td>
<td></td>
</tr>
<tr>
<td>Phone Number</td>
<td></td>
</tr>
<tr>
<td>Details of Grievance</td>
<td></td>
</tr>
<tr>
<td>Name of Person Recording Grievance</td>
<td></td>
</tr>
<tr>
<td>Designation of Person Recording Grievance</td>
<td></td>
</tr>
<tr>
<td>Proposed Date of Response to Grievance</td>
<td></td>
</tr>
<tr>
<td>Signature of Recording Person</td>
<td>Signature of Complainant</td>
</tr>
<tr>
<td>GRIEVANCE REDRESS RESPONSE</td>
<td></td>
</tr>
<tr>
<td>Date of Redress</td>
<td></td>
</tr>
<tr>
<td>Decision of GO (Give full details)</td>
<td></td>
</tr>
</tbody>
</table>

There will be a separate reporting mechanism for GBV, SEA and SH cases that are discrete and anonymous. The liaison officer will be the focal point and will establish the system to handle these
complaints that will include reference to confidentiality, safety and survivor-centered approach. All registration of the data will be confidential and anonymized.

Access to legal remedies will not be impeded: If the project is unable to resolve a complaint, it may be appropriate to enable complainants to have recourse to external experts. These may include public defenders, legal advisors or NGOs. The client may find that it can work in collaboration with these third parties and affected communities to find successful resolution of the issues. However, this is not always possible, and situations may arise where complainants will choose to pursue legal recourse. In this case, the proponent will not impede access to these mechanisms.

Publicizing and Disclosure of the GRM
The GRM will be disclosed to the stakeholders through written and verbal communication. The mediums to be used for this purpose are staff meetings, written communication and one-to-one meetings. Each worker and employee shall be made aware of the GRM in place at the time of joining, as part of the induction process.

Receiving and Recording Grievances
As part of the GRM, the grievances from the stakeholders or their representatives may be communicated verbally (in person to the respective supervisor or over a telephonic conversation) or in written form (in the form given below). All grievances communicated in any of these mediums shall be recognized and recorded by the supervisor as and when it is expressed. The project should also put in place suggestion/complaint boxes at strategic locations across the facility. These suggestion/complaint boxes will be opened at least every week. The employees and workers may drop their grievances in these boxes as well in keeping with the format attached. In case of any worker or employee needs to file an anonymous complaint, s/he shall be allowed to do so by not filling the name, department, signature and contact information.

Maintaining a Grievance Register
Each grievance thus received, shall be recorded in a grievance register. The format for the grievance register shall be provided.

This grievance register shall be updated at each stage of the grievance redressal. Once the grievance is recorded in the register, a preliminary analysis shall be undertaken by the grievance officer (preferably HR representative) to ensure that the grievance is within the scope of the GRM.

Acknowledgement of Grievance
Once the grievance is received, a grievance number shall be allocated and communicated to the grievant. This communication shall also serve as an acknowledgement of the grievance. In case the grievance is assessed to be out of the scope of the GRM, a communication towards the same shall be made to the grievant, and an alternative mode of redressal shall be suggested.
As part of this acknowledgement a tentative timeline for the redressal of the grievances shall be identified, in keeping with the process below. This acknowledgement shall be provided on the same day as the grievance is received.

Resolution and Closure Allocation of Responsibility
Once the grievance is received and recorded, based on the subject and issue, the Grievance Officer shall identify the department, contractor or personnel responsible for resolving the grievance.

The Grievance Officer and concerned department shall then undertake an enquiry into the facts and figures relating to the grievance. This shall be aimed at establishing and analyzing the cause of the grievance and subsequently identifying suitable mitigation measures for the same. The analysis of the cause will involve studying various aspects of the grievance such as the employees past history, frequency of the occurrence, management practices, etc.

As part of this investigation, the grievance officer may also undertake confidential discussions with the concerned parties to develop a more detailed understanding of the issue at hand. The site investigation shall be completed in no more than 10 working days of receiving the grievance.

Resolution, Escalation and Closure Based on the understanding thus developed, the grievance officer, in consultation with the concerned departments, shall identify a suitable resolution to the issue.

This resolution shall be accordingly communicated to the grievant within 10 working days of completing the site investigation. In case the issue is beyond the purview of the grievance officer, it should be escalated to the department head or proponent.

A communication regarding the same shall be provided to the grievant. The developer shall in turn endeavor to resolve the grievance within 10 working days of the escalation.

The proponent shall endeavor to resolve the grievance within 10 working days. If, however the proponent is not able to identify an adequate resolution for the grievance, then an adequate response shall be given to the grievant along with a suggested alternative resolution to the grievance. If at any stage, the grievant is not satisfied with the solution, s/he may choose to ask for an escalation of the grievance to the next level.

Update of Records
The records of the grievance register shall be updated every working week with the present status of the grievance. Once the grievance is resolved, and the same has been communicated to the grievant, the grievance shall be closed in the grievance register. The grievance register should also provide an understanding of the manner in which the grievance was resolved. These instances shall then serve as references for any future grievances of similar nature. In case of anonymous complaints, a summary of the grievance and resolution shall be posted on the notice boards and other relevant public places.
EXTERNAL GRIEVANCE MECHANISM
The process to be followed for the redressal of the external stakeholder grievances is summarized below.

Publicizing and Disclosure of the GRM
The GRM will be disclosed to the stakeholders through written and verbal communication. The mediums to be used for this purpose are public meetings, group discussions, and provisioning of the GRM in the manner outlined in the previous section. The GRM disclosure will be done along with the disclosure of other management plans.

MONITORING OF THE GRM IMPLEMENTATION
It is important to monitor GRM to ensure that the grievances are addressed and resolved. The monitoring of the GRM implementation will be undertaken on a monthly basis by the proponent team. Monitoring will include:

Figure 0-1: GRM steps
• Auditing the implementation of the GRM;
• Monitoring the formal and informal consultation activities conducted with the stakeholder groups with respect to GRM;
• Tracking feedback received from engagement activities
• Recording and tracking commitments made to communities; and
• Assessing the efficacy of the engagement activities in terms of the desired outcomes and the participation of the stakeholder groups

REPORTING OF THE GRM
The performance of the GRM will be reviewed on a quarterly basis during the implementation period. For the purpose of review, the quarterly reports will be considered for analysis and discussion. On the basis of these reports, a Grievance Redressal Report will be prepared.
8.0 IMPACT IDENTIFICATION, ANALYSIS AND MITIGATION.

8.1 Overview

Construction of the proposed Steel Processing Plant is likely to present several environmental impacts. These can be either positive or negative.

8.1.1 Impact identification and predication

The type, scale and location of the proposed project guided the scope of the impact identification. The direct and indirect project-related impacts on the environment and local community and residual impacts were considered during the assessment of impacts. The extent of impact covers the project site, specific project activity at particular period and potentially affected areas beyond the project site. Duration in which the impact takes place is also considered in the evaluation of the impact. The period can be specific to the period of certain activities or could be related to the occupancy period of the project development. Thus, in terms of duration an impact can be viewed as a short, medium, long term impact or permanent. Impact can affect biodiversity partially or completely. For instance, only small part of habitat, ecological processes or small population of species can be destroyed by the impact. Thus, magnitude of an impact was evaluated as proportion of the environmental entity affected. The probability of the impact to happen was derived from the frequency of the activity and frequency of impacts. The four characteristics described above were used to synthesise significance of the impact as shown in impact significance assessment criteria that is used to generate the risk assessment matrix.

8.1.1.1 Magnitude

The assessment of magnitude will be undertaken in two steps. Firstly, the key issues associated with the Project have been categorized as beneficial or adverse. Secondly, the magnitude of potential impacts has been categorized as major, moderate, minor, or negligible based on consideration of the parameters such as:

- Duration of the impact – ranging from temporary with no detectable impact to continuing beyond decommissioning;
- Spatial extent of the impact – for instance, within the site, boundary to regional, national, and international;
- Reversibility – ranging from no change to permanent requiring significant intervention to return to baseline;
- Likelihood – ranging from unlikely to occur to occurring regularly under typical conditions; and
- Compliance with legal standards and established professional criteria - ranging from meets or exceeds minimum standards or international guidance to substantially exceed national standards and limits / international guidance.

8.1.1.2 Sensitivity

Sensitivity is generally site specific and criteria have been developed from baseline information gathered. The sensitivity of a receptor will be determined based on review of the population (including proximity/numbers/vulnerability) and presence of features on the site or the surrounding area. Generic criteria for determining sensitivity of receptors are outlined in
<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Definition (considers duration of the impact, spatial extent, reversibility, and ability of comply with legislation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Vulnerable receptor (human or ecological) with little or no capacity to absorb proposed changes or minimal opportunities for mitigation.</td>
</tr>
<tr>
<td>Medium</td>
<td>Vulnerable receptor (human or ecological) with limited capacity to absorb proposed changes or limited opportunities for mitigation.</td>
</tr>
<tr>
<td>Low</td>
<td>Vulnerable receptor (human or ecological) with some capacity to absorb proposed changes or moderate opportunities for mitigation.</td>
</tr>
<tr>
<td>Negligible</td>
<td>Vulnerable receptor (human or ecological) with good capacity to absorb proposed changes or and good opportunities for mitigation.</td>
</tr>
</tbody>
</table>

Generic Criteria for Determining Sensitivity

8-2 Anticipated Environmental Impacts

During the field survey, key environmental problems relating to the proposed Steel Processing Plant development were identified. They were obtained by making physical observations at the project site as well as existing land use in the neighborhood. The magnitude of each impact is described as significant (major), moderate (minor) or insignificant. Generally, insignificant impacts have no obvious long-term consequences (positive or negative), and are regarded as being inconsequential. But those with long-term repercussions are classified as significant. Using an impact matrix, the anticipated environmental impacts for the proposed project has been presented in Table 6-1.

8-3 Impacts during Construction Process

The proposed development is likely to have the following impacts during the construction phase:

8-3.1 Positive Impacts

It is estimated that 30% of the project cost will be reflected in employment of professional services and labour. During the construction period, the informal sector will benefit from the operations of the Steel Processing Plant development. This will involve kiosk owners who will be selling food to workers on site. This is envisioned to promote “jua kali” entrepreneurs in the local area. Second, there will be employment opportunities especially to casual workers. Employment opportunities will be of a benefit from both social and economic perspectives. From economic perspective, abundant unskilled labour will be used in economic production, on the other hand, from social perspective, the labourers will be engaged in productive employment other than remaining idle, hence avoiding social vices such as drug abuse and robberies among others. Apart from casual labourers, semi-skilled and skilled labour, professionals such as town planners, architects and structural engineers among others are also expected to obtain gainful employment during the period of construction. There will be gains in the local and national economy through consumption of locally available materials including concrete tiles, concrete, timber and cement and the expected revenue to accrue from the taxes and other rates from the proponent.
Table 6-1: Detailed Impact Matrix for the Proposed Steel Processing Plant Development

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Positive Impacts</th>
<th>Negative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insignificant¹</td>
<td>Moderate²</td>
</tr>
<tr>
<td></td>
<td>(Negligible)</td>
<td>(Mild)</td>
</tr>
<tr>
<td>Creation of employment opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased tax revenue to national and county governments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved aesthetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal use of land in the area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased availability and accessibility of Steel products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire out break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural distortion of the neighbourhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proliferation of uncollected solid and hazardous/toxic wastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate disposal of waste during construction phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modification of micro-climate and disruption of vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased development without commensurate services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pollution generated by dust during construction and exhaust from the furnace flue gas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Insignificant stands for impacts that are too small or unimportant to be worth consideration

² Moderate stands for impacts that are average in amount, intensity and degree

³ Significant stands for sufficiently great impacts that are noteworthy and important to be worth of attention
| Noise pollution generated by construction activities and generator during operation phase |
| Soil erosion during excavations resulting in loose soil structure |
| Social vices due to concentration of people |
| Workers accidents during construction |
| Increased run-off leading to flooding arising from paved ground and expansive roofs |
| Pressure on infrastructure and services, e.g., traffic related conflicts, water, power and sanitation, |
| Mushromming of food kiosks |
| Pollution of underground water systems by septic tank and storage tanks |
| Bulk scrap storage issues i.e. oil leaks and water contamination |
| Insecurity |
8-3.2 Negative Impacts

i) Potential Workers Accidents During Construction
There is possibility for workers’ accident during construction phase. This can be fatal or lead to serious injuries if the proponent has not developed a comprehensive accident control and management plan prior beginning construction. Also possibility of visitors or intruder accidents.

ii) Air Pollution
There is likely to be pollution in terms of noise and dust during the project’s construction phase. This is likely to be from construction vehicles serviced/attended at the project site during excavation and vehicles accessing the site while felling construction material. Particulate matter (PM) may be generated in each of the process steps, and may contain varying concentrations of mineral oxides, metals (e.g. arsenic, cadmium, mercury, lead, nickel, chromium, zinc, manganese), and metal oxides. Sources include melting and refining activities (BF, BOF, EAF) and heating furnaces (depending of type of fuels used); mechanical actions (e.g. scarfing and grinding); and handling of materials (e.g. raw materials, additive, recycled and waste materials, and by-products). Additional sources of particulate matter (PM) emissions include coal storage, conveying, charging, coking, pushing, and quenching.

Air Quality Emission Standards
In undertaking the construction activities described above, the Contractor will comply with the following national regulatory air quality standards and WBG/WHO Air Emission and Ambient Air Quality guidelines, whichever is stringent. Regular monitoring to determine compliance will be done by the Supervision Consultant and corrective/mitigation measures applied where necessary.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Time Weighted Average</th>
<th>Residential, Rural & Other Area</th>
<th>Controlled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Industrial Area</td>
<td>Residential, Rural & Other Area</td>
</tr>
<tr>
<td>Sulphur oxides (SOX);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Average</td>
<td>80 ug/m³</td>
<td>60 ug/m³</td>
<td>15 ug/m³</td>
</tr>
<tr>
<td>24 hours</td>
<td>125 ug/m³</td>
<td>80 ug/m³</td>
<td>30 ug/m³</td>
</tr>
<tr>
<td>Annual Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instant Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instant Peak (10 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxides of Nitrogen (NOX);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Average</td>
<td>80 ug/m³</td>
<td>60 ug/m³</td>
<td>15 ug/m³</td>
</tr>
<tr>
<td>24 hours</td>
<td>150 ug/m³</td>
<td>80 ug/m³</td>
<td>30 ug/m³</td>
</tr>
</tbody>
</table>

Table 3-3. Ambient Air Quality Tolerance Limits
iii) **Disruption of Existing Vegetation**

The construction process will involve clearing of existing vegetation cover. In the long-term, this is likely to change the microclimate of the area and aesthetics.

iv) **Soil Disruption**

Since the proposed project will involve extensive paving, construction and hard landscaping, this is likely to increase the volume and rate of storm water resulting to flooding and siltation. Excavation of the existing
black cotton soil can also tamper with the natural soil types and structure in the area and associated microorganisms. The loose soil and any quarry spoil may increase soil erosion on site.

v) Inadequate Disposal of Human Waste

Lack of a toilet at the construction site is likely to encourage poor disposal of human waste, especially by the construction workers. This is foreseen as a major public health concern. It is therefore advised that the developer/proponent considers developing a pit latrine on site for the workers before the commencement of project development or provide a mobile toilet (honey sucker) in order to maintain acceptable sanitation standards.

vi.) Dust

Dust is one of the most visible invasive and potential irritating impact associated with construction activities. During site setting activities production of large amount of dust is inevitable during blasting, processing and transporting. Site conditions that affect the impacts of dust generated during extraction of aggregate and dimension of stone include rock properties, the direction of prevailing winds, size of the operations and proximity to populated areas. Dust concentrations, deposition rates and potential impacts tend to decrease rapidly away from source. Fine dust particles pose serious health problems since these are suspended as fine particles in the atmosphere and are easily inhaled. In view of this a carefully implemented dust control plan should be put in place to reduce the dust generated and safeguard the health of workers and local community. The impact on dust generated from the proposed project is not likely to be minimal due to the fact that it is located away from the proximity of human population. In addition, other activities such as crushing and grinding will be done at a different area within the already acquired parcel of land. Measures for dust reduction and control will be necessary.

8-3.3 Potential Mitigation Measures

<table>
<thead>
<tr>
<th>Anticipated Impacts</th>
<th>Potential Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Generation and Disturbances.</td>
<td>• Construction work should be carried out during the specified time i.e. from 0730 hrs to 1700hrs; noise generated during the day is not quite disturbing as compared to it being generated at night hours as noise threshold are higher during the day</td>
</tr>
<tr>
<td></td>
<td>• Sensitize construction vehicles’ drivers and machinery operators to switch off engines of vehicles when not in use.</td>
</tr>
<tr>
<td></td>
<td>• Workers should be provided with relevant personal protective equipment (PPE)/ materials such as earmuffs and earplugs; when operating noisy machinery and when in noisy environment. These provide a physical barrier that reduces inner ear noise levels and prevent hearing loss from occurring.</td>
</tr>
<tr>
<td></td>
<td>• Suppressors or silencers on equipment or noise shields; for instance, corrugated iron sheet structures.</td>
</tr>
<tr>
<td></td>
<td>• Machineries should be maintained regularly to reduce noise resulting from friction.</td>
</tr>
</tbody>
</table>
- Provision of billboards at the construction site notifying of the construction activity and timings.
- Manual labour is recommended in the construction phase, to reduce the noise emitted by construction machinery.
- Annual noise measurements should be conducted as required under the Noise Prevention and Control Rules 2005 and Noise and Vibration Regulations of 2006.
- Steam injectors to be provided with silencers

| Soil erosion and vegetation loss | Provision of soil conservation structures on erosion prone areas to control occurrence of soil movement.
| | Avoid unnecessary movement of soil materials from the site.
| | Good management of the runoff/storm water to reduce its impact on loose soil by e.g. roof or rainwater harvesting
| | Control construction activities especially during rainy / wet conditions
| | Landscaping: Re-surface open areas on completion of the project and introduce appropriate vegetation where applicable and create a green belt within the project site.
| | Provide appropriate drainage systems to manage surface runoff.
| | Loose soil to be utilized for levelling low-lying areas inside the plant. |

| Air Pollution | Provide appropriate Personal Protective Equipment (PPEs) such as nose masks to the affected workers on site during construction phase.
| | Regular and prompt maintenance of construction machinery and equipment. This will minimize generation of noxious gases and other suspended particulate matter
| | Control of areas generating dust particles. Such areas should be regularly cleaned or sprinkled with water to reduce dust. The areas can be enclosed to mitigate effects of wind.
| | Workers should be trained to understand the hazards that may be generated in such work environments.
| | Workers should be encouraged to go for regular health check-ups to ascertain their health standards
| | Consider use of bags filters or electrostatic precipitators
| | Provide stacks (exhaust) & pipes) at appropriate stack heights during operation phase. |
8-4 Impacts during Operational Phase

8-4.1 Positive impacts

i) Employment Generation

The project will result in the generation of employment opportunities during operational phase. This will involve steel processing experts, plant manager, supervisors, support staff, security personnel, solid waste management staff, among others.
ii) **Increase in Revenue**

There will be a positive gain for the revenue system. Land value of the said plot will be revised upwards. Rates paid to the County government of Kajiado will also be revised upwards owing to the capital appreciation of the property upon development. Government revenue collection will increase through payment of VAT and other rates, licenses and taxes including PAYE from staff.

iii) **Individual Investment**

Economically, the project will be an investment to the proponent. The proposed project once complete can also be used as a collateral asset.

iv) **Improved Local economy**

As noted earlier in this report, steel plays a pivotal role in economic growth and development. The establishment of the plant in this area will serve to improve accessibility of steel products to developers thus boosting the economy of the area, county and country at large. Trial down effect to transporters, crap dealers and associated activities.

iv.) **Optimal Use of Land**

The Steel plant development leads to optimal use of land. Considering the scarcity of serviced land in Kisaju area and Kajiado the project enhances the returns on the limited land space in the area.

v) **Increase in available Steel products**

The project will add to the depressed supply of steel products in the area and county, thus complementing the government’s initiative of providing access to quality and standard steel products to all.

v) **Improved Aesthetics**

Some of the developments in Kisaju area are old and are built with low quality materials. The proposed project adds to improved aesthetics of the local area. This will attract new residents into the neighborhood and with modern building structures that are well planned.

8-4.2 **Negative Impacts**

i) **Occupational health Risks**

The occupational health risks associated with steel processing activities are many. The OSHA (2007) places a duty on employers to ensure the health as well as the safety of their employees. Yet across industry, each year many more people become ill as a result of their work than are killed or injured in industrial accidents. Most diseases caused by work do not kill, but can involve years of pain, suffering and discomfort for those affected. It has long been recognized that health risks have not received the same attention as safety risks. Cole (1996) gives several reasons for this. These are:

- The health risk may not be understood or well defined and the cause/effect relationship not established.
- Health risks tend not to attract widespread publicity or demand the same urgent attention as safety risks.
Health risks appear to have little, if any, short term effect and it may be that ill-health does not occur for many years after exposure.

Health risks may be more difficult to address, resulting in attention being directed to risks where control is more visible and likely to attract tangible benefits.

Comprehensive data on the occupational ill-health may simply not exist in many cases and in practice, the true extent of occupationally related ill-health may be unknown.

Health problems may not be as obvious as a safety failure such as a structural collapse, machinery accident or a fire and explosion. Most people may never see cases of occupational ill health whilst at work. They may miss the connection between the effect and its causes, so it is even more important to adopt a proactive approach to managing health risks.

Risks to health from work activities include:

- Skin contact with irritant substances, leading to dermatitis etc;
- Inhalation of respiratory sensitizers, triggering immune responses such as asthma;
- Badly designed workstations requiring awkward body postures or repetitive movements result in upper limb disorders, repetitive strain injury and other musculoskeletal conditions;
- Noise levels which are too high, causing deafness and conditions such as tinnitus;
- Too much vibration, eg from hand-held tools leading to hand arm vibration syndrome and circulatory problems;

There are a number of specific health and safety Regulations that deal with specific health hazards in the country as discussed earlier in the report. Occupational health is about protecting the physical and mental health of workers and ensuring their continual welfare in their working environment. In addition to preventing ill health, other important aspects of occupational health include:

- Ensuring fitness and physical capability to perform a job safely;
- Health education and promotion;
- Providing medical services including health surveillance;
- Rehabilitation after illness or injury.

If the assessment of risk shows that further action is necessary, then control measures should be selected according to the hierarchy of risk control, namely

Hierarchy of Risk Control

I. **Elimination of the risk.** This can be achieved through redesigning the activity or equipment to eliminate the release of the hazard;

II. **Reduction of the risk at source through engineering controls.** This can be achieved by enclosing the activity or equipment to capture and/or absorb the hazard, dilute the hazard or release it into a safer place;

III. **Minimizing the risk through procedural controls.** This involves implementing systems and procedures so that work is carried out in a particular way that limits exposure to the hazard.
IV. Use of appropriate personal protective equipment (PPE).

The use of PPE is the last resort for the control of the exposure of employees to hazards. This is because PPE only protects the wearer and then only if worn properly. Situations where the use of PPE may be necessary are:

- Where adequate control of exposure cannot be achieved by elimination, reduction at source or minimization through administrative controls.
- As a ‘stop-gap’ measure, where a risk assessment indicates that further control measures are necessary and until those further measures have been introduced and are deemed effective.

Having introduced new control measures it is essential that they are adequately used by employees, and so systems should be put in place to ensure that such measures are used effectively. This is a responsibility of both the employer and employee and can be achieved by ensuring that the workforce receive adequate instruction and training through:

- Working procedures, codes of practice or other procedural controls;
- Educating the workforce on the hazards and risks involved in their work and how control measures will protect their health.
- Effective supervision.

Employees must use these control measures in compliance with any such instruction and training. Systems should be put in place to ensure that the effectiveness of all the risk reducing control measures does not decrease over time. Any engineering controls should be subject to regular checking and maintenance. The frequency of this should be determined by the risk assessment and based on the engineering reliability of the control measures and the consequences of their failure with respect to exposure.

The anticipated health impacts of the proposed development are discussed under various sub-headings below.

II. Increased Population without Commensurate Services

The neighbourhood where the proposed project is located is already characterized by high-density development. The proposed development will further lead to an increased demand on commensurate services and facilities in Kisaju-Kajiado East sub-county. If population in the neighbourhood is not provided with appropriate services and facilities, then pressure on existing facilities is bound to increase.

ii) Surface Water Drainage and run-off.

The plant will have an impervious surface thus reducing water infiltration into the ground due to increased paved areas. This implies that surface runoff from the site will increase. The amount of runoff will increase slightly due to lowered infiltration of rain water into the soil. The surface water from the plant is likely to contain oils and greases if drainage system is not well designed. The design should ensure that all water from service area and other section of the plant where spills are anticipated passes through properly constructed oil interceptor. If this is done, the impact of surface run-off from the plant on the environment will be minimized and provision of rain water harvesting structures to reduce the storm water.
excess storm water runoff efficiently such that no area in the downstream for transport of the produced products from the plant.

iii) Traffic Congestion
The plant will to some extent have effect on traffic flow along the feeder roads as vehicles will slow down as they approach the plant. The impact will be minimized by providing ample parking space at the plant. However, the impact cannot be fully eliminated. In addition, acceleration and deceleration lanes shall be constructed from the main road.

iv) Noise Pollution
The proposed project is like to cause noise pollution as it is adverse due to noise emanating from rotary and vibrating machinery and steam injectors. The impacts of noise are highly dependent on sound source, the topography, and land use, ground cover of the surrounding site, climatic conditions and distance of the receiver from the sound source. Noise and vibrations from steel processing activities can have adverse effects if not well managed. Despite the low potential of the vibration and noise on human health, it is necessary to note that, the workers will be at greater risk of exposure at the site. Consequently, appropriate measures should be taken to protect them. To achieve this noble objective, the following proponent must fully comply with the following: -

- The Occupational Safety and Health Act, 2007
- The Factories and Other Places of Work (Noise Reduction) Rules, 2005
- The Environmental Management and Coordination (Noise and excessive vibrations) (control) regulations, 2009.
- The Public Health Act Cap 242

National Noise Emission Guidelines
In undertaking the construction activities described above, the Contractor will comply with the following national regulatory air quality standards and WBG noise level guidelines, whichever is stringent. Regular monitoring to determine compliance will be done by the proponent and corrective/mitigation measures applied where necessary.

National Noise Guidelines

<table>
<thead>
<tr>
<th>Zone</th>
<th>Maximum Noise level limits dB (A)</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>Places of worship</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Residential:</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>1. Indoors</td>
<td>Day time:</td>
<td></td>
</tr>
<tr>
<td>2. Outdoors</td>
<td>6.01a.m – 8.00p.m</td>
<td></td>
</tr>
<tr>
<td>Night time:</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Noise Levels for Construction Sites

<table>
<thead>
<tr>
<th>Facility</th>
<th>Maximum Noise level limits dB (A)</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>Health facilities, Educational Centres and homes of disabled</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Residential</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Industrial</td>
<td>85</td>
<td>65</td>
</tr>
<tr>
<td>Commercial</td>
<td>75</td>
<td>50</td>
</tr>
</tbody>
</table>

Source-NEMA

Noise levels from a factory or a workshop (Continuous or Intermittent Noise)

<table>
<thead>
<tr>
<th>dB(A)</th>
<th>Daily</th>
<th>Weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>8 hours</td>
<td>40 hours</td>
</tr>
<tr>
<td>88</td>
<td>4 hours</td>
<td>20 hours</td>
</tr>
<tr>
<td>91</td>
<td>2 hours</td>
<td>10 hours</td>
</tr>
<tr>
<td>94</td>
<td>1 minute</td>
<td>5 hours</td>
</tr>
<tr>
<td>97</td>
<td>30 minutes</td>
<td>2.5 hours</td>
</tr>
<tr>
<td>100</td>
<td>15 minutes</td>
<td>1.25 hours</td>
</tr>
<tr>
<td>103</td>
<td>7.5</td>
<td>37.5 minutes</td>
</tr>
<tr>
<td>106</td>
<td>3.75</td>
<td>18.75 minutes</td>
</tr>
<tr>
<td>109</td>
<td>1.875 minutes</td>
<td>9.375 minutes</td>
</tr>
</tbody>
</table>

Source-NEMA

N/B: **Noise levels should not exceed a level of**

1. Factory/Workshops 85 dB (A)
2. Offices 50 dB (A)
3. Factory/Workshop Compound 75 dB (A)

Maximum Permissible Noise level for Impact or Impulsive Noise
<table>
<thead>
<tr>
<th>Sound Level dB(A) Max</th>
<th>Permitted impulses per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>100</td>
</tr>
<tr>
<td>130</td>
<td>1,000</td>
</tr>
<tr>
<td>120</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Source: NEMA

v) Increased Pressure on Infrastructure and Facilities
The neighbourhood is already established by high industrial and commercial density development. These have intensified land use, hence leading to high demand for infrastructure and services. Utilities will be used by more people especially electricity and water resources. The site is connected to main power and water from a neighbors borehole water supply. During construction water stress is a likely impact due to increased demand but the contractor will be required to obtain water from outside the premises and truck it to the construction site. The proposed construction development is likely to increase pressure on existing infrastructure such as roads. This would be due to increased human and vehicular traffic along the fronting access road.

vi. Proliferation of Solid Waste.
The proposed development is likely to contribute to an increased generation of solid waste. It would be of adverse impact if the solid waste generated is stockpiled in the open for years This has a potential of attracting disease vectors such as rats, flies, and cockroaches if not well managed.

viii.) Pollution of Underground Water by Foul Water from Septic Tank
Each proposed development is connected to a septic tank and soak pit. If this is not well designed and regularly inspected, pollution of underground water system is likely to be experienced. Surface runoff in cases of pollution might result into surface water or streams pollution.

Vix.) Fire-Out Break
Fire is one of the common hazards within steel processing plants. If its preparedness, management and mitigation are not well planned, then chances of loss of lives/injuries and properties are likely to be reported.

Vx). Air pollution from production processes.
The production process is likely to contribute to emissions of heat, dust, SO2, NO2, CO and vapor. Particulate matter (PM) may be generated in each of the process steps, and may contain varying concentrations of mineral oxides, metals (e.g. arsenic, cadmium, mercury, lead, nickel, chromium, zinc, manganese), and metal oxides. Sources include smelting and refining activities (BF, BOF, EAF) and heating furnaces (depending of type of fuels used); mechanical actions (e.g. scarfing and grinding); and handling of materials (e.g. raw materials, additive, recycled and waste materials, and by-products). Additional sources of particulate matter (PM) emissions include coal storage, conveying, charging, coking, pushing, and quenching.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Time Weighted Average</th>
<th>Property Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter (PM)</td>
<td>Annual Average</td>
<td>50 ug/m³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>70 ug/m³</td>
</tr>
<tr>
<td>Oxides of Nitrogen (NOX);</td>
<td>Annual Average</td>
<td>80 ug/m³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>150 ug/m³</td>
</tr>
<tr>
<td>Sulphur oxides (SOX);</td>
<td>Annual Average</td>
<td>50 ug/m³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>125 ug/m³</td>
</tr>
<tr>
<td>Hydrogen Sulphide</td>
<td>24 hours</td>
<td>50 ug/m³</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Annual/24 hours</td>
<td>0.5 – 2.0ug/m³</td>
</tr>
<tr>
<td>Ammonia</td>
<td>24 hours</td>
<td>100 ug/m³</td>
</tr>
</tbody>
</table>

Source - NEMA

8-4.3 Potential Mitigation Measures at the operation Phase

<table>
<thead>
<tr>
<th>The Anticipated Impact</th>
<th>Potential Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Water Demand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Encourage water reuse/recycling mostly during operation phase.</td>
</tr>
<tr>
<td></td>
<td>• Provide notices and information signs i.e. ‘keep/leave the tap closed’, etc. This will awaken the civic consciousness of stakeholders with regards to water usage and management.</td>
</tr>
<tr>
<td></td>
<td>• Install water-conserving taps that turn-off automatically when water is not in use.</td>
</tr>
<tr>
<td></td>
<td>• Ensure water conservation by closed loop recycling of waste water</td>
</tr>
<tr>
<td></td>
<td>• Use of treated wastewater in various non production uses</td>
</tr>
<tr>
<td></td>
<td>• Ensure rainwater harvesting to curb shortage.</td>
</tr>
<tr>
<td>Air pollution from production processes e.g Dust</td>
<td>• Use covered conveyance systems for dry raw materials</td>
</tr>
<tr>
<td></td>
<td>• Tall stacks for better dispersal of airborne pollutants.</td>
</tr>
<tr>
<td></td>
<td>• Sprinkle water on roads passing through populated areas to minimize dust generated by the trucks.</td>
</tr>
<tr>
<td></td>
<td>• Provision of workers with personal protective equipment and clothing such as dust masks.</td>
</tr>
<tr>
<td></td>
<td>• Fencing off the site from members of the public- this will reduce unnecessary exposure to dust and other health and safety risks.</td>
</tr>
<tr>
<td></td>
<td>• Use bag filter as for pollution device.</td>
</tr>
<tr>
<td>Noise pollution</td>
<td>• House noise prone equipment in separate enclosures</td>
</tr>
<tr>
<td></td>
<td>• Ensure Procurement of low noise prone equipment</td>
</tr>
<tr>
<td>Environmental & Social Impact Assessment Study Report for Proposed Development of a Steel Processing & Storage Plant by Kanha Rolling Ji Mills Limited, on Plot No. Kajiado/Kaputiei-North/108320, Located Off Namanga Road, in Kisaasu Area, Kajiado East Sub-County, Kajiado County</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encourage vibration dampening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of dynamically balanced of rotating parts Limit processing activities to normal working hours i.e 0800Hrs -1700Hrs. Noisy operations activities can be scheduled or limited to certain times of the day.</td>
</tr>
<tr>
<td>Workers should be provided with Personal Protective Equipment (PPEs) such as ear muffs.</td>
</tr>
<tr>
<td>Workers should be regularly health screened.</td>
</tr>
<tr>
<td>Installation of silencers on noise machines and equipment including trucks</td>
</tr>
<tr>
<td>Mounting compressors or generators on anti-shocks to reduce vibrations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid Generation and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximize processing of solid waste either by reuse within the plant or selling to other gainful use</td>
</tr>
<tr>
<td>Avoid contamination of ground water by use of impervious liner in storage yard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traffic Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notify the motorists about the development once implementation is started. It is important that warning/informative signs (billboards) be erected at the site. These should indicate the operation hours and when works are likely to be started and completed. The signs should be positioned in a way to be easily viewed by the public and mostly motorists.</td>
</tr>
<tr>
<td>The traffic along connecting routes should be controlled especially during construction phase and mostly when large trucks are turning into the site, say for delivery of materials.</td>
</tr>
</tbody>
</table>

| Installing an automatic fire alarm system for the entire project mostly on operation. |
| Install firefighting equipment, heat and smoke detectors, static water storage tanks for firefighting as approved by the Kajiado County Government. |
| All fire control and fighting facilities to be installed as per the requirements stipulated in the approved plans. |
| The occupier to ensure that the requirements of the Fire Risk Reduction Rules, 2007 are in place. |

<table>
<thead>
<tr>
<th>Power/Energy demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure connection with the kenya power and lighting company</td>
</tr>
<tr>
<td>Power usage will be closely monitored to avoid wastage</td>
</tr>
<tr>
<td>Switch of machines when not in use</td>
</tr>
<tr>
<td>Ensure use of high quality equipment that guarantees efficiency</td>
</tr>
</tbody>
</table>
8-5 Impacts during Decommissioning Phase.

8-5.1 Commissioning of New Buildings
During the commissioning phase, a clean-up of the site shall be undertaken the wastes that were used in construction process, if not collected and safely disposed of are likely to pose environmental problems. These wastes include, but not limited to:

- Sand
- Cement
- Crushed stone
- Gravel
- Soil
- Concrete tiles and paving blocks
- Timber
- Steel plant parts (reinforcement, casement, wiring, pipe etc)
- Glass
- PVC material (pipes, conduits and fittings)
- Paint

The above wastes will be adequately cleared and disposed of at the site approved by the County government of Kajiado.

8-5.2 Decommissioning at the end of Project Lifespan
If at the end of the project life span the buildings or its parts are to be demolished, then decommissioning stage will have to address two primary issues related to environmental impacts of demolishing old buildings:

- Minimizing waste disposal through re-use and recycling and
- Properly handling hazardous and regulated materials.

In addressing the first issue deconstruction of the old buildings is usually undertaken. Deconstruction is the manual dismantling of a building/its parts so materials can be salvaged for reuse. Deconstruction can range from the soft stripping of non-structural elements such as cabinets and plumbing to the full structural...
disassembly of the buildings. The deconstruction process is the opposite of the construction process; the last thing to go on is the first thing to come off. Of necessity, most deconstruction projects employ all three options reuse, recycling and disposal but reuse is often made the priority. Usually, when deciding whether to deconstruct or not, the first simple rule to remember is: Deconstruct no building before its time. Preservation should be the first choice when deciding what to do with old buildings. With increased mechanization, however, recycling and disposal of Construction & Development debris has become more appealing than dismantling for reuse. Current building methods and materials, such as use of composite materials, laminates and adhesives, also favor recycling or disposal.

During deconstruction, necessary precautions will be undertaken such as:

- Mitigating against noise and dust by either manually disassembling the major portions of the items used during construction for example hoardings. The demolition requiring the use of heavy equipment will, however, be accomplished while wetting down the structures with water to reduce dust propagation. Wetting will also be done so as not to create runoff that could migrate from the site.

- All demolition debris will be handled with care to avoid material being blown by the wind from the proposed site of development to the surrounding environment. All debris should be packaged and transported to appropriate disposal site following established county government and public health waste management procedures.

- All demolition work shall be carefully executed with the particular aim of preserving the items being removed. All materials, components and fittings arising from the demolitions shall become the property of the contractor as a way of reducing the disposal cost.

- The method of demolition used shall be in line with all laws and by-laws governing such activities. In particular, the contractor will be required to protect the adjacent properties, users / workers and the public from any nuisance in form of noise and dust, and from falling objects. The contractor shall also take all necessary measures to prevent any damage or loss to third party.

- Before embarking on demolition, the contractor shall give all the necessary notices as required by law.

- An attempt shall be made to limit the quantity of materials removed from site or sent to landfill through reuse of the debris in the construction and landscaping stage.

- Re-sell or reuse reclaimed materials to reduce the cost of new materials and where possible minimize the projects overall environmental impact through reuse and recycling.

- Take particular care when decommissioning the fuel storage tanks to avoid soil contamination with oils and other petrochemicals.

- Use appropriate vehicles (covered) to transport demolition waste according to waste management regulations.
Table 6-2: Anticipated Environmental Impacts and Mitigation Measures at the demolition stage of the project Life Cycle

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Proposed Mitigation Measures</th>
<th>Responsibility for Mitigation</th>
</tr>
</thead>
</table>
| Air pollution by dust generated during demolition process. | • The demolition exercise will be limited at day time only
• All personnel working on the project will be trained prior to commencing the demolition exercise on methods for minimizing negative impacts on air quality.
• Construction vehicle drivers will be under strict instructions to minimize unnecessary trips, refill petrol fuel tanks in the afternoon and minimize idling of engines.
• All active demolition areas will be watered at least twice a day to reduce dust.
• All trucks hauling demolition debris/wastes shall be covered and licensed as per the EMCA waste management regulations.
• Careful screening to contain and arrest demolition related dust will be adopted
• Exposed demolition debris of e.g. dust and sand, will be enclosed, covered, and watered daily before transported to disposal site.
• Demolition activities will be suspended when wind speed exceeds 25 mph.
• Windbreakers will be installed at the windward side of the construction site.
• All workers on the site will be required to wear protective clothing while on duty. | • Project proponent
• NEMA inspectors
• County government of Kajiado. |
| Noise pollution by demolition activities. | • Explosives will not be used during the exercise
• Portable barriers will be installed to shield compressors and other small stationery equipment where applicable.
• Use of equipment designed with noise control elements will be adopted where necessary.
• Trucks used during demolition exercise on site shall be routed away from noise sensitive areas in the neighbourhood, where feasible. | • Project proponent
• County government of Kajiado
• NEMA inspectors |
| **Workers accidents during demolition process.** | • All workers will be sensitized before the exercise begins, on how to control accidents related to the demolition exercise
• A comprehensive contingency plan will be prepared before demolition begins, on accident response. | • Project proponent
• County government of Kajiado |
| **Proliferation of uncollected demolition debris and related wastes** | • Sound barriers are to be installed for pile driving activities.
• Idling time for pick-up trucks and other small equipment will be minimized to limited time.
• Use of very noisy equipment will be limited to daytime only.
• All workers operating in noisy areas or operating noisy equipment will be provided with earpieces to protect against extreme noise.
• Special care to be considered when excavating out the fuel storage tanks to avoid soil contamination with petro-chemicals
• The demolition exercise will be limited at day time only
• Private contractor will be engaged to collect demolition debris/wastes
• All debris/wastes to be collected regularly to control air pollution and injury etc
• Receptacles will be provided for storage of light demolition products e.g. timber, plastics tiles etc
• Refuse collection vehicles will be covered to prevent scatter of wastes by wind.
• Engage services of NEMA to collect demolition debris to avoid illegal final dumping at unauthorized site.
• All persons involved in refuse collection shall be in full protective attire. | • Proponent
• County government of Kajiado
• NEMA inspectors |
| Practice one command approach for relying instructions. |
| Adherence to safety procedures will be enforced at all stages of the exercise |
| All workers, pursuant to labour laws, shall be accordingly insured against accidents. |
| All workers will be instructed to wear Personal protective equipment (PPEs) during demolition, including helmets and this enforced. |
| Demolition work will be limited to daytime only to avoid workers accidents due to poor visibility |

| County Public Health Officer |
| Ministry of Labour |
| NEMA inspectors |
8-6 Other Potential Negative Impacts and Mitigation Measures

The potential negative impacts and possible mitigation measures for the proposed Steel Processing plant development are summarized below – Table 6:3:

Table 8-3: Other Potential Negative Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Potential Negative Environmental Impacts</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Architectural Incompatibility leading to distortion of neighbourhood aesthetic image</td>
<td>1-1 Harmonize building scale with existing development in neighbourhood.</td>
</tr>
<tr>
<td></td>
<td>1-2 Harmonize detail, material and finishes for roofs and walls with existing development in the neighbourhood and use earth colors that blend with the environment.</td>
</tr>
<tr>
<td>2. Disruption of existing natural environment and modification of micro-climate:</td>
<td>2-1 Development restricted to the approved density – building line, plot coverage and plot ratio according to zoning scheme.</td>
</tr>
<tr>
<td>- Increased development density</td>
<td>2-2 Careful layout and orientation of buildings to respect wind and sun direction.</td>
</tr>
<tr>
<td>- Increased glare/solar reflection</td>
<td>2-3 Adequate provision of green and open space planted with grass, shrub and tree cover.</td>
</tr>
<tr>
<td>- Reduced natural ground cover</td>
<td>2-4 Minimum use of reflective building material and finishes for roof, wall and pavement</td>
</tr>
<tr>
<td>- Obstruction of ventilating wind</td>
<td></td>
</tr>
<tr>
<td>- Increased surface run-off</td>
<td></td>
</tr>
<tr>
<td>3. Pollution and health Hazards</td>
<td>3-1 Damping down of site e.g. sprinkling water to dusty areas on construction site.</td>
</tr>
<tr>
<td>- Dust and other construction waste</td>
<td>3-2 Containment of noisy operation, including locating noise operations away from sensitive neighbours</td>
</tr>
<tr>
<td>- Noise generation from construction activities.</td>
<td>3-3 Limit construction work to day hours only. Construction work to take shortest time possible.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>3-5</td>
<td>Use manual labour as much as possible</td>
</tr>
<tr>
<td></td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>3-6</td>
</tr>
<tr>
<td>4</td>
<td>Increased loading of Infrastructure services</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Worker accidents and health infection</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5-7</td>
<td>Provide and maintain firefighting equipment and designate fire assembly points.</td>
</tr>
<tr>
<td>5-8</td>
<td>Notifying neighbours about construction to raise awareness and put up signs such as “work in progress”</td>
</tr>
<tr>
<td>5-9</td>
<td>Provide sanitary facilities for workers during construction</td>
</tr>
<tr>
<td>6</td>
<td>Increased social conflict</td>
</tr>
<tr>
<td>6-1</td>
<td>Encourage formation of community policing and neighbourhood association.</td>
</tr>
<tr>
<td>6-2</td>
<td>Condone the site with iron sheet during construction</td>
</tr>
<tr>
<td>6-3</td>
<td>Employ laborers of 18 years and above only</td>
</tr>
<tr>
<td>7</td>
<td>Solid and Liquid Wastes</td>
</tr>
<tr>
<td>7-1</td>
<td>Segregate waste and provide waste holding units at Strategic locations.</td>
</tr>
<tr>
<td>7-2</td>
<td>Recycle and recover some of the debris such as to cover earth surfaces.</td>
</tr>
<tr>
<td>7-3</td>
<td>Debris and other inert materials (wood, steel bars, nails, papers, glass etc) be recycled offsite or in approved dumpsites.</td>
</tr>
</tbody>
</table>

Adoption of best practice in waste management is recommended where waste reduction and mitigation hierarchy strategy in embraced. Avoidance of waste as much as possible is the beginning point followed by 4Rs (Reduce, Re-use, Recover, Recycle. It is only the residual waste that needs to be treated and disposed. Below are the waste management options with the order of priority.
9.0 MITIGATION, PREVENTION AND PROJECT ALTERNATIVES.

9-0.1 OCCUPATIONAL HEALTH, SAFETY AND ACCIDENT PREVENTION PLAN.

9-0.2 Site Organization
To ensure health and safety conditions and prevent accidents on site, efforts will be made to have a clear site organization plan. These include:

- Developing a clear site organization plan and construction schedule
- Delivery and storage of material at appropriate locations and times
- Right size of staff/workers with clear work schedule and appropriate dress gear
- Control staff and vehicle movement on site and keep out unwanted persons
- Site office with safety kit i.e. first aid and fire extinguisher
- Site toilet, could be a mobile toilet
- Adequate water supply for both construction work, operation and worker use.

9-0.3 Project Team
In order to ensure proper and appropriate organization of activities during plan, design and construction of the project, there must be appropriate project team. These include

- Plant installation experts / Mechanical engineers
- Town / physical planner
- Environmental Impact Assessment Expert
- Project Architect
- Structural / Civil Engineer
- Service Engineers
- Quantity Surveyor
- Land Surveyor

9-0.4 Enforcement of Standards and Legal Requirement
The project must ensure that appropriate standards and legal requirements are met. These include:

- That building work is in accordance to county government approved drawings and plans
- That building operations to meet the building code specifications
- That requirements of the Factory Workers Act are followed
- That requirements of the Public Health Act are followed
- That requirements as outlined in the Environmental Action Plan are observed.

9-0.5 Activities of Workers
The following activities by workers are clearly identified and must be closely monitored and organized to ensure health, safety and accident standards on site:

- Excavation using pick axes and shovels
9-0.6 Activities by Machinery and Light Equipment
The activities of machinery and plant must also be properly organized and monitored in order to ensure health and safety conditions and prevent accidents. The machinery and plant to be used on site include –

- Compacting machine
- Vibrators
- Concrete mixer
- Small size hoist machine
- Goods truck
- Tipper
- Machinery or equipment installed for operation

9-0.7 Insurance
The project proponent and building contractor will take appropriate insurance cover for the various project activities and personnel and/or workers.

9-1 PROJECT ALTERNATIVES

91.1 Overview
A careful assessment affirms that most of the potential negative impacts in the project can be mitigated with significant level of success.

9-1.2 Appraisal of Alternative Development Options

i) No Development Option
The nil intervention describes a situation in which the proponent does not undertake the proposed steel processing plant development. In terms of environmental considerations this is the best option, however, this option would imply economic loss to the proponent, local and national economics. The project site is currently underutilized while there is substantial steel products demand in the area and beyond.

In case the authorities such as NEMA settle for no development intervention, the owner would lose in terms of financial commitments already made in design and planning of the project. This includes approval application fees to the County government of Kajiado; professional fees to EIA lead experts and physical planners. The option would similarly make the jobs that the project envisioned to create to be forgone. The
cost of labour alone is estimated at Ksh 7.5m going by the BQs estimates. The county and national government will also lose the tax income that the project would generate if implemented. Needless to add that the project will increase supply of Steel products and associated facilities in the area, its disapproval would further constrain the government’s objective to provide access to steel products.

ii) **Relocation Option**

The other option available for the project implementation is for the proponent to relocate it to an alternative site either within Kisaju and its neighbourhood. At the moment, the proponent does not have an alternative site. This implies that he has to buy another piece of land elsewhere. Looking for land of the similar size and market location and completing official transactions might take over one year, with no guarantee that the land would be available, and if such land is available, its cost might be beyond affordable for the proponent.

The proponent will have to restart the planning, design, and approval of the project afresh. The proponent will need to re-engage professionals like EIA lead/audit experts and physical planners to assess the viability of the new site. The cost of labour and professional fees alone is estimated at **Ksh. 7,500,000**. Additional costs will arise from the design and approval of the architectural and structural drawings for the new site. In addition, she will have to send a planning brief to the county government, place a public notice on site and in the local daily newspaper. By the time the proposal is approved by authorities, economic parameters such as cost of building materials and equipment would have changed. This would lead to a situation like zero option and the project may no longer be viable leading to eventual abandonment. The stand-off will discourage local and international investors from investing in Steel processing or the metal sub-sector, manufacturing sector and/or construction industry.

iii) **Exploration of Alternative Land uses**

The developer could explore other uses for the site such as commercial, institutional, recreational, and/or light industry. If studies establish that these are better suited to the site in functional and economic sense, then the developer could apply for change/extension of user to allow for such development. However, the field survey revealed that the property is in high proximity to other existing developments. The light industry may lack complementary linkages in the neighborhood. Considering the foregoing coupled with the necessary procedural requirements for effecting such change, this option does not offer significant advantages over the current proposal. The current site is zoned for the land use of the nature of the proposed project.

iv) **Preferred Development Option**

All the alternative options analyzed have implications, which make the current design option proposed by the proponent to be more viable. It is concluded that:

- The alternatives are likely to reduce the returns to investment that the proponent would have realized if the current proposed design were to be approved
- The alternatives are likely to reduce the amount of Steel processing plants that the proponent is willing to supply in Kisaju area of Kajiado East sub-county.
- Prime land in Kisaju-Kajiado East is scarce and costly. Because of this, the proposed project may not be relocated to an alternative site in Kajiado East sub-county.
There are several developed Steel processing plant in the neighborhood whose construction the County government of Kajiado approved. The area is a high density zone.

- The proposed development will therefore blend easily with the current development trend in Kisaju area and its neighbourhood.

9.2 Alternative source of power.

i) **Main Electricity.**

The site is already supplied with power from the main Kenya power grid. This is the preferred option by the proponent since it will require only internal working and approvals from Kenya Power Company. The option is cheap on the short term but expensive in the long run due to the recurrent electricity bills during operation phase.

ii) **Solar Power**

The project area has a high potential for solar energy since the location has about 6 to 7 sunshine hours in a day. Solar power is therefore recommended for green energy but initial cost of installation of solar panels, batteries and other accessories is prohibitive. This study recommends that the proponent considers a combination of both mains and solar power be used especially mains for the bulk energy supply and solar for water heating. Solar energy will minimize expenditure on electricity bills. The structures should be built to enhance use of natural lighting during the day. Using solar power for the whole project would be the most preferred option environmentally but, the capital outlay will be large beyond the means of the proponent. Besides the energy requirement for the plant are huge and may not be generated by solar power installations.
10.0 ENVIRONMENTAL MANAGEMENT PLAN

10-1 Introduction.

Integrating environmental issues into construction management, such as those related to development of Steel processing plant is that it increases efficiency while enhancing the companies’ financial and environmental management. These issues, which are normally of financial concern at company level, are costs, product quality, investments, level of productivity and planning.

Environmental planning and management as a concept seeks to improve and protect environmental quality for both urban and rural residents through segregating activities, which are environmentally incompatible. Environmental planning and management integrates urban structure land use, social systems, regulatory law, environmental awareness and ethics.

Environmental and Social Management Plan (ESMP) for development projects such as the proposed Steel processing plant development is aimed at providing a logical framework within which identified negative environmental impacts can be mitigated and monitored. In addition, ESMP assigns responsibilities for action to various actors, and provides time frame within which mitigation measures can be done and the cost.

ESMP is a vital output for an environmental impact assessment as it provides a checklist for project monitoring and evaluation and as a basis for environmental audit. A number of mitigation measures have already been incorporated into the project design. The ESMP outlined in table 8-1 has addressed the identified potential negative impacts and mitigation measures of the proposed Steel processing plant development on plot L.R. No. Kajiado/Kaputiei-North/108320, in Kisaju area, Kajiado East sub-county.

10-2 Environmental Monitoring and Evaluation

Environmental monitoring and evaluation are essential in project’s lifespan as they are conducted to establish if the project implementation has complied with the set environmental management standards as articulated in the Environmental Management and Coordination Act (EMCA) CAP 387, and its attendant Environmental (Impact Assessment and Audit) Regulations, 2003 amended 2016.

In the context of the proposed project, design has made provisions for an elaborate operational monitoring framework for the following among others:

- Disruption of natural environment and modification of microclimate
- Air and noise pollution
- Increased heat generation
- Oil spills and leaks
- Proliferation of kiosks
- Workers accidents safety and health infections during construction process
- Proliferation of uncollected wastes both solid and liquid
- Aesthetics degradation
- Fire out-breaks
Table 8-1: Environmental Management Plan Matrix for the Proposed Development of a Steel Processing Plant

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Proposed Mitigation Measures</th>
<th>Responsibility for Mitigation</th>
<th>Means for Monitoring</th>
<th>Frequency for Monitoring</th>
<th>Estimated Cost (Kshs)</th>
</tr>
</thead>
</table>
| Modification of Micro – Climate | • Careful layout and orientation of the plant and buildings to respect microclimate: wind and sun direction.
• The project will use minimum reflective building materials and finishes for roof, walls and paving.
• Harmonize site drainage design with neighbouring premises | • County government of Kajiado
• Project proponent
• NEMA inspectors | Periodic Activities | Periodic checks | Inclusive in development cost |
| Air pollution during construction process. | • All personnel working on the project will be trained prior to starting construction on methods for minimizing air quality impacts during construction.
• Construction vehicle drivers will be under strict instructions to minimize unnecessary trips, refill petrol fuel tanks in the evening and minimize idling of engines.
• All active construction areas will be watered at least twice a week to reduce dust.
• All trucks hauling soil, sand and other loose materials shall be covered. | • Project proponent/contractor
• Ministry of Health: county public health officer
• NEMA inspectors
• Ministry of Labour
• County government of Kajiado | Periodic Activities | Periodic and surprise checks | 12,000 per month over the construction period |
- All paved access roads will be swept daily. This includes all paved parking areas and staging areas at construction site.
- Traffic speed of construction/other vehicles will be restricted to not more than 15 mph.
- Provide all workers with PPEs and enforce their use.
- Careful screening of construction site to contain and arrest construction-related dust.
- Vegetation will be replanted in disturbed areas as soon as possible to create green space and stabilize soils.
- Exposed stockpiles of e.g. dust and sand, will be enclosed, covered, and watered daily, or treated with non-toxic soil binders.
- Excavation and grading activities will be suspended when wind speed exceeds 25 mph.
- Windbreakers will be installed at the windward side of the construction site.
- All workers on the site will be required to wear protective clothing while on duty.
| Environmental & Social Impact Assessment Study Report for Proposed Development of a Steel Processing & Storage Plant by Kanha Rolling JI Mills Limited, on Plot No. Kajiado/Kaputiei-North/108320, Located Off Namanga Road, in KisaJu Area, Kajiado East Sub-County, Kajiado County |
|---|---|---|---|
| **Architectural Incompatibility leading to distortion of neighbourhood aesthetic image** | • Regular servicing of vehicles. | • Harmonize building scale with existing development in neighbourhood.
• Allow for green and open spaces
• Harmonize detail, material and finishes for roofs and walls with existing development in the neighbourhood and use colors that blend with the environment. | • Contractor
• NEMA
• County government of Kajiado |
| | | | Routine activities
Periodic checks
Inclusive in the project budget |
| **Noise pollution by construction activities.** | • Portable barriers will be installed to shield compressors and other small stationery equipment where applicable.
• Encourage use of manual labour where appropriate
• Use of equipment designed with noise control elements will be adopted where necessary.
• Trucks used at construction site shall be routed away from noise sensitive areas in the neighbourhood, where feasible.
• Sound barriers are to be installed for pile driving activities.
• Idling time for pick-up trucks and other small equipment will be minimized to limited time. | • Project proponent/contractor
• County government of Kajiado
• County Public Health Officer
• Ministry of Labour
• Workers
• NEMA inspectors | Routine Activities
Periodic and surprise checks
Inclusive in the project budget |
- Use of very noisy equipment will be limited to daytime only.
- All workers operating in noisy areas or operating noisy equipment will be provided with earmuffs to protect against extreme noise.
- Construction works to be carried out during daytime only.

| Workers accidents during construction process. | All workers will be sensitized before construction begins, on how to control accidents related to construction.
| - A comprehensive contingency plan will be prepared before construction begins, on accident response.
| - Accordingly, adherence to safety procedures will be enforced.
| - All workers, pursuant to labour laws, shall be insured against accidents.
| - All workers will be instructed to wear protective clothing during construction, including helmets. This would be enforced to ensure compliance.
| - Construction work will be limited to daytime only | Project proponent/contractor
| - County government of Kajiado
| - County Public Health Officer
| - Ministry of Labour
| - Workers
| - NEMA inspectors | Routine Activities
<p>| Periodic checks | Inclusive in the project budget |</p>
<table>
<thead>
<tr>
<th>Issue Description</th>
<th>Solution/Countermeasure</th>
<th>Responsible Parties</th>
<th>Periodic Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate human waste disposal by workers during construction process</td>
<td>As provided for by the Building Code, a temporary or mobile latrine will be provided on site to be used by construction workers</td>
<td>Project proponent, Contractor, County government of Kajiado, Ministry of Health, Ministry of Labor, NEMA inspectors</td>
<td>Periodic checks Inclusive in the project cost</td>
</tr>
<tr>
<td>Disruption of existing natural environment and modification of micro-climate</td>
<td>Development restricted to the approved density – building line, plot coverage and plot ratio. Careful layout and orientation of buildings to respect wind and sun direction. Adequate provision of green and open space planted with grass, shrub and tree cover. Minimum use of reflective building material and finishes for roof, wall and pavement</td>
<td>Proponent, County government of Kajiado, NEMA</td>
<td>Periodic activities Periodic checks Inclusive in the project cost</td>
</tr>
</tbody>
</table>
| Increased surface run off leading to flooding, from paved grounds and expansive roofs. | Surface run off and roof water will be harvested and stored in underground reservoir for re-use. | Contractor/proponent
County government of Kajiado
NEMA inspectors | Periodic and routine Activities | Periodic checks | Inclusive in the project cost |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm water management plan that minimizes impervious area increases infiltration by use of recharge areas, and use of retention, and/or retention with graduated outlet control structures, will be used.</td>
<td>Maintain internal and immediate external drainage systems clear all the times</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dig channels for water runoff into underground water reservoirs.</td>
<td>Compact loose soils and apply binding materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undertake roof catchment harvesting to reduce volumes of storm water.</td>
<td>Stone pitching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Pollution and health Hazards | Damping down of site e.g. sprinkling water to dusty areas on construction site. | Proponent
County government of Kajiado | Periodic activities | Periodic checks | Inclusive in the project cost |
OPERATION PHASE

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Proposed Mitigation Measures</th>
<th>Responsibility for Mitigation</th>
<th>Means for Monitoring</th>
<th>Frequency for Monitoring</th>
<th>Estimated Cost (Kshs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased development density likely to adversely affect ecological carrying capacity.</td>
<td>• The proposed development will strictly adhere to the conditions attached to its approval such as zoning guidelines that include plot/ground coverage and floor index/plot ratio.</td>
<td>• Proponent</td>
<td>Periodic Activities</td>
<td>Periodic checks</td>
<td>Inclusive in development cost</td>
</tr>
<tr>
<td></td>
<td>• County government of Kajiado</td>
<td>• County government of Kajiado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NEMA inspectors</td>
<td>• NEMA inspectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure on infrastructure and services, i.e. traffic related conflicts, water, power and sanitation.</td>
<td>• Delivery and collection hours by service vehicles will be limited to off-peak hours and customer vehicles.</td>
<td>• Developer/proponent</td>
<td>Periodic Activities</td>
<td>Periodic checks</td>
<td>Inclusive in the project budget</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• County government of Kajiado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service deceleration line will be provided at the entry point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate roof catchment and underground water storage tanks will be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion of the capacity of water and sewer lines to accommodate the increased demand in the area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby generator will be installed to ensure uninterrupted power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use energy saving appliances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use solar energy for heating water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect leaks early enough and fix immediately to conserve water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Isinya-Kisaju water supply line |
| NEMA inspectors |

| Mushrooming of food kiosks |
| Kiosks will be provided on site, with adequate sanitation, during construction process. |
| Pursuant to the Physical Planning Act (Cap.286), development control is to be enforced around the project site. |
| Adhere to public health Act provisions |

| County government of Kajiado |
| Physical Planning Department |
| Neighbourhood association |
| County Public Health Officer/Ministry of Health |
| NEMA inspectors |

| Periodic Activities |
| Periodic and surprise checks |
| Inclusive in the project cost |
| Water supply and septic tank/storm water breakdown. | • Regular inspection and maintenance of water system and septic tank
 • Before construction begins, it will be determined where septic tank and water pipes are located to avoid reticulation break down and ease of locating water infrastructure lines | • Developer/Management
 • NEMA inspectors
 • County government of Kajiado | Periodic Activities | Periodic checks | Inclusive in the project cost |
| High water usage | • Install water meters
 • Install good taps that provide good conservation measures
 • Utilize storm water for irrigating of lawns and flower beds and tree planting
 • Regular inspection of pipes to detect leaks
 • Recycle water during processing
 • Maintain internal and external drainage systems clear all the times
 • Provide Roof catchment harvesting | • Contractor/proponent | Periodic activities | Periodic checks | Inclusive in the project cost |
| High water demand | • Provide water storage tanks for use in case of water rationing
 • Provide for rain water /roof catchment harvesting | • Contractor/proponent | Periodic activities | Periodic checks | Inclusive in the project cost |
<table>
<thead>
<tr>
<th>Fire Accidents</th>
<th>Periodic activities</th>
<th>Periodic checks</th>
<th>Inclusive in the project cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Install a fire hydrant preferably near the main entrances</td>
<td>Proponent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Train the workers in firefighting and subject them to frequent fire drills and designated fire assembly point</td>
<td>County government of Kajiado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Place sand filled buckets in strategic places</td>
<td>NEMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Encourage to handle and store flammable material safely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Clear label fire exists points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide and regularly service the firefighting equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ensure block electric wiring is done by qualified electrician who is licensed by Kenya power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• All windows should be fitted with openable grills</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Proliferation of uncollected solid waste. | • Segregate solid waste at source
- A NEMA licensed private contractor will be engaged to collect solid waste generated.
- Wastes to be collected regularly to control air pollution and vermin/insects etc.
- Receptacles will be provided for waste storage prior to collection.
- Resource recovery will be encouraged once the project takes off so as to shrink waste stream and recover non-recyclables.
- Refuse collection vehicles will be covered to prevent scatter of wastes by wind.
- Wastes will be collected by a licensed operator to avoid illegal final dumping at unauthorized sites.
- All persons involved in refuse collection shall be in full protective attire.
- Re use some of the waste | • Proponent
- Hired private contractor
- County government of Kajiado
- County Public Health Officer
- NEMA inspectors | Routine activities
Periodic and surprise checks | Inclusive in project cost. |
|---|---|---|---|---|
| Increased loading of Infrastructure services | • Establish a collection schedule for clients picking steel products.
• Provide retail shops outside the plants compound. Preferably in the neighbouring towns and business | • Proponent
• County government of Kajiado | Periodic activities
Periodic checks | Inclusive in the project cost |
<table>
<thead>
<tr>
<th>Environmental & Social Impact</th>
<th>Proposal</th>
<th>Stakeholders</th>
<th>Activities</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>centres to avoid overcrowding at the plants compound and vicinity.</td>
<td>National government Ministry of Interior and Ministry of Education</td>
<td>Proponent</td>
<td>Periodic activities</td>
<td>Inclusive in the project cost</td>
</tr>
<tr>
<td>Have clear exit/entry on the local access road including providing deceleration and acceleration lanes</td>
<td></td>
<td>County government of Kajiado</td>
<td>Periodic checks</td>
<td></td>
</tr>
<tr>
<td>Encourage rainwater harvesting.</td>
<td>NEMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision of increased water storage capacity</td>
<td></td>
<td>Proponent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of a septic tank during the operation phase (when the plant is operational)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased social conflict</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encourage formation of community policing and neighbourhood association (Nyumba Kumi).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condone the site with iron sheet during construction and the sheets should be colored to blend with environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic congestion</td>
<td></td>
<td>Developer / proponent</td>
<td>Periodic activities</td>
<td>Routinely</td>
</tr>
<tr>
<td>Notify the motorists about the development once implementation is started. It is important that warning/informative signs (billboards) be erected at the site. These should indicate the operation hours and when works are likely to be started and completed. The signs should be positioned in a way to be easily viewed by the public and mostly motorists.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The traffic along connecting routes should be controlled especially during the construction phase and mostly when large trucks are entering into the site, say for delivery of materials.

Clients vehicles to collect products in off peak hours and during day time only.

Liaise with local traffic police for traffic control if need be.

DECOMMISSIONING PHASE

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Proposed Mitigation Measures</th>
<th>Responsibility for Mitigation</th>
<th>Means for Monitoring</th>
<th>Frequency for Monitoring</th>
<th>Estimated Cost (Kshs)</th>
</tr>
</thead>
</table>
| Workers accidents and hazards when handling hazardous wastes. | • Adequate collection and storage of waste will be provided and ensured on site, and safe transportation to, and display methods at designated areas.
• All receptacles for storing hazardous wastes shall be labelled and adequately covered in accordance with section 5 of the waste management regulations
• All employees will be required to wear protective clothing when handling hazardous wastes.
• Train workers on advisable safety measures. | • Project proponent/contractor
• County government of Kajiado
• County Public Health Officer
• Ministry of Labour
• Workers
• NEMA inspectors | Routine Activities | Periodic and surprise checks | Inclusive in the project budget |
- All workers will be adequately insured against unforeseen accidents.
- Provide PPEs and enforce their use

Demolition/deconstruction

- Ensure materials after demolition are in a form that allows recycling and reusing
- Dispose waste through appropriate disposal methods using best available practices.
- Put up dust screens around surrounding buildings to trap dust and particulates
- Carry out demolition activities during the day only when permissible noise levels are high
- Acquire NEMA license for activities beyond the allowable thresholds e.g. if explosives are to be used.
- Special care be taken when dismantling the fuel storage tank to minimize soil and ground water contamination with oil leaks and other petrochemicals.
- All vehicles carrying demolition waste should be licenced by NEMA

- County government of Kajiado
- Contractor/proponent
- NEMA Inspectors

Inclusive in the project cost

- Periodic checks
and appropriately covered during transportation.
10-3 Policies to be developed and documented by the proponent to guide project implementation

Implementation of the proposed project will require careful and sound environmental planning to ensure that all issues and concerns raised by all stakeholders are fully addressed and that all potential negative impacts are appropriately mitigated to ensure environmental sustainability. To achieve this; Kanha Rolling Mill Limited who is the project proponent will establish and develop policies to guide the implementation of the proposed project. The policies once developed will be vital in the following ways among others:

- The policies will enable management to develop and maintain sound relations with construction workers and the neighboring community.
- The policies will enable management put in place measures and structures that will care for the safety, health and welfare of all workers on site and the neighboring community residents.
- The policies will provide a framework for management to plan for, and put in place, monitoring programmes that will ensure conservation and protection of the environment, appropriate waste management and disposal.
- The policies will provide a framework for Corrugated Sheets Limited to assume its corporate social responsibility for its activities with regard to conservation of the environment as well as for the well-being of the local community.

The following policies will need to be developed and documented by the project proponent:

- Environmental and sustainability policy
- Occupational Health and safety policy
- Stakeholder engagement and involvement policy
- Training and development policy
- Risk Management policy
11 RECOMMENDATIONS

11-1 Overview

From the foregoing analysis, the social, economic and environmental rating for this project is highly positive. Evaluation of alternatives has already shown that options are limited and costly. Already the proponent has incurred a substantial amount of money in the project up to design stage.

Further delay of the project is denying all stakeholders the anticipated benefits of the investment. While, redesigning or relocation of time will lead to loss of time and money that is already tied in the preliminary costs of the project.

The project does not pose any serious and negative environmental impacts. Adequate mitigation measures have been proposed to address any of the negative impacts arising from the project.

The proposed project will inject approximately Ksh. 35,000,000/- to the area and national economy. The project will create employment and improve income earnings in the area. The project will boost the demand for Steel products and associated services in Kajiado county and Kenya.

11-1.1 Recommendations

- That National Environmental Management Authority do consider, approve and grant required Environmental Impact Assessment License to the proponent in respect to the proposed Steel processing plant project on Plot L.R. Kajiado/Kaputiei-North/108320, off the Namanga road, in Kisaju area, Kajiado East Sub-county, Kajiado County.

- That County government of Kajiado do support this application for Environmental Impact Assessment License in respect to the proposed Steel processing plant project on Plot L.R. Kajiado/Kaputiei-North/108320, off the Namanga road, in Kisaju area, Kajiado East Sub-county, Kajiado County.

- That the Project Report here now presented is sufficient and meets the requirements of the Environmental (Impact Assessment and Audit) Regulations 2003.
12 REFERENCES

APPENDIX

Title Deed and Proponent Identity Documents

Architectural Drawings and Designs

Site Plan

Returns from Stakeholder Consultation

Environmental Experts Practicing License
REPUBLIC OF KENYA

THE LAND REGISTRATION ACT
(No. 3 of 2012, section 108)

THE REGISTERED LAND ACT
(Chapter 300) (REPEALED)

Title Deed

Title Number: KAJIADO/KAPUTIEI NORTH/108320
Approximate Area: 2.02 HA
Registry Map Sheet No.

This is to certify that KANHA ROLLING MILL LIMITED
P. O. BOX 554-00282 KITENGA

is (are) now registered as the absolute proprietor(s) of the land
comprised in the above-mentioned title, subject to the entries in
the register relating to the land and to such of the overriding
interests set out in section 28 of the Land Registration Act (No.
of 2012) as may for the time being subsist and affect the land.

GIVEN under my hand and the seal of the

KAJIADO District Land Registry

this 16TH day of DECEMBER 2018.

[Signature]

Land Registrar
ENVIRONMENTAL & SOCIAL IMPACT ASSESSMENT STUDY REPORT FOR PROPOSED DEVELOPMENT OF A STEEL PROCESSING & STORAGE PLANT BY KANHA ROLLING MILLS LIMITED, ON PLOT NO. KAJIADO/KAPUTIEI-NORTH/108320, LOCATED OFF NAMANGA ROAD, IN KISAJU AREA, KAJIADO EAST SUB-COUNTY, KAJIADO COUNTY

This is to certify that taxpayer shown herein has been registered with Kenya Revenue Authority.

Taxpayer Information

<table>
<thead>
<tr>
<th>Taxpayer Name</th>
<th>KANHA JI ROLLING MILL LIMITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Address</td>
<td>KANHAJIROLLINGMILL@GMAIL.COM</td>
</tr>
</tbody>
</table>

Registered Address

<table>
<thead>
<tr>
<th>L.R. Number :</th>
<th>Building : KANHA JI MILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street/Road</td>
<td>City/Town : KITENGELA</td>
</tr>
<tr>
<td>County : Kajiado</td>
<td>District : Kajiado East District</td>
</tr>
<tr>
<td>Tax Area : Kitengela</td>
<td>Station : Machakos</td>
</tr>
<tr>
<td>P. O. Box : 551</td>
<td>Postal Code : 00242</td>
</tr>
</tbody>
</table>

Tax Obligation(s) Registration

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Tax Obligation(s)</th>
<th>Effective From Date</th>
<th>Effective Till</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Income Tax - Company</td>
<td>11/12/2018</td>
<td>N.A.</td>
<td>Active</td>
</tr>
</tbody>
</table>

The above PIN must appear on all your tax invoices and correspondences with Kenya Revenue Authority. Your accounting end month is December unless a change has been approved by the Commissioner-Domestic Taxes Department. The status of Tax Obligation(s) with ‘Dormant’ status will automatically change to ‘Active’ on date mentioned in “Effective Till Date” or any transaction done during the period. This certificate shall remain in force till further updated.

Disclaimer: This is a system generated certificate and does not require signature.
CERTIFICATE OF INCORPORATION

I hereby CERTIFY that,

KANHA JI ROLLING MILL LIMITED

is on this date 25 Oct 2018 Incorporated under the Companies Act, 2015 and that the Company is a PRIVATE LIMITED COMPANY.

Registrar Of Companies

This is a system generated certificate. To validate this document send the word BRS to 21546
ENVIRONMENTAL & SOCIAL IMPACT ASSESSMENT STUDY REPORT FOR PROPOSED DEVELOPMENT OF A STEEL PROCESSING & STORAGE PLANT BY KANHA ROLLING JI MILLS LIMITED, ON PLOT NO. KAJIADO/KAPUTIEI-NORTH/108320, LOCATED OFF NAMANGA ROAD, IN KISAJU AREA, KAJIADO EAST SUB-COUNTY, KAJIADO COUNTY

COUNTY GOVERNMENT OF KAJIADO

COUNTY HOUSING DEPARTMENT
P.O. BOX 11-01100,
KAJIADO.

FIFTH SCHEDULE

FORM P.P.A. 2

Registered No. Application PKE/365/2019

NOTIFICATION OF APPROVAL OF DEVELOPMENT PERMISSION

TO:
KANHA JI ROLLING MILL LIMITED,
P.O. BOX 551 - 00242,
KITENGELE.

Your application numbered as above, submitted on 27/08/2019 for permission to build **industrial development [steel factory]** on plot L.R. No. Kid/Kap-Nth/108320 situated in Kisaju, off Namanga road has been **approved** on 28/08/2019 vide **Min. 17/2019** subject to the following conditions:

1. Construction works should be carried out as per the approved drawing (building plan).
2. Construction works must be supervised by a registered Contractor, Architect and/or Engineer.
3. Construction must commence within 12 months from the date of approval and be completed within 24 months otherwise plans be re-submitted for approval.
4. The land not constituting part of the public utility and in dispute.
5. The County Government shall not be held liable for any professional oversight that may undermine stability of the structure.
6. The County Government is indemnified against damages or risks that may result from negligence and poor workmanship during and after construction.
7. Erect proper signage on the plot before commencement of works.
8. Observe zoning regulations before commencing works.
9. Any amendments and / or alterations on approved plans must be approved by the County Government before any further works are carried out.
10. Safeguard the site before commencing works.
11. Comply with other relevant requirements of your proposal.

Dated: 28 AUG. 2019

APPROVED

Signed..
County Director of Housing

NOTE: Non-adherence to the above conditions shall lead to automatic nullification of this approval and shall attract a fine of KSH. 100,000 or 5 years’ imprisonment or both.
NOTIFICATION OF APPROVAL OF DEVELOPMENT PERMISSION

TO:
KANHAIKI ROLLING MILL LIMITED,
P.O. BOX 551-00242,
KITENGELA.

Your application numbered as above, submitted on 15/01/2019 for permission to change use from Agricultural to Industry on plot L.R. number Kid/Kap-North/108320 situated in Kisaju, off Namanga Rd has been approved on 08/03/2019 subject to the following/appended conditions:

1. Plot coverage should not exceed forty (40%) percent of the entire land.
2. Building line of at least 15m from the main access road be maintained.
3. Building height should not exceed second (2nd) floor.
4. Land and building be used for Industry purposes only.
5. Building plans (Architectural and Structural) be approved by the County Government of Kajiado and other relevant Government agencies before commencing any construction works.
7. Adequate tress cover be planted within the site to mitigate against environmental pollution.
8. That the land does not constitute part of any public or disputed private land.
9. Compliance with section 36, 41 and 52 of the Physical Planning Act (Cap 286).
10. Provision of adequate and functional on-site parking (open to the sky).
11. The County Government of Kajiado may nullify the approval or alter the conditions for approval in case of non-compliance or as it may deem fit.

08 MAR 2019

Signed:

County Director of Physical Planning
ATTACHED IS A LIST OF ALL THE MEMBERS WHO PARTICIPATED IN PUBLIC PARTICIPATION ON THE 20TH DAY OF FEBRUARY 2019 AT 20TH DAY OF FEBRUARY 2019 AT 8.00AM OVER CHANGE OF USE OF NEMA NJIA SU OVER PROPERTY NO. KAJIADO/KAPUTIEI-NORTH/108320 REGISTERED IN THE NAME OF KANHA ROLLING MILL LIMITED. I WAS PRESENT AND DO CONFIRM THAT THIS IS THE LIST.

GITAUNDUNGU
ADVOCATE
P.O.BOX 8745 - NAIROBI

Gitaundunnu

CHIEF'S OFFICE
OLOODSIDAN LOCATION
STEPHEN S. TINANKO
RECEIVED
ON 20TH APRIL 2019

PUBLIC PARTICIPATION WAS WELL ATTENDED BY LOCAL RESIDENTS AND THE VIEWS ON THE PROJECTS
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>ID</th>
<th>Phone 1</th>
<th>Phone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simon Kari</td>
<td>756842</td>
<td>0721457810</td>
<td>0723617272</td>
</tr>
<tr>
<td>2</td>
<td>George Wanjala</td>
<td>3408256</td>
<td>072384735</td>
<td>07420838334</td>
</tr>
<tr>
<td>3</td>
<td>Stephen Rotien</td>
<td>077604588</td>
<td>0721625016</td>
<td>0742365838</td>
</tr>
<tr>
<td>4</td>
<td>Michack Mwiri</td>
<td>146725491</td>
<td>0721625016</td>
<td>0742365838</td>
</tr>
<tr>
<td>5</td>
<td>Alex T.</td>
<td>20071856</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>6</td>
<td>Jackson Nasuruka</td>
<td>13084485</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>7</td>
<td>Jackson Njuguna</td>
<td>23558411</td>
<td>0721625016</td>
<td>0742365838</td>
</tr>
<tr>
<td>8</td>
<td>Benson Kari</td>
<td>11621134</td>
<td>0721625016</td>
<td>0720499996</td>
</tr>
<tr>
<td>9</td>
<td>Jonathan Dinashu</td>
<td>22190651</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>10</td>
<td>Pauline Senia</td>
<td>28042518</td>
<td>07420838334</td>
<td>0721625016</td>
</tr>
<tr>
<td>11</td>
<td>Mary Seama</td>
<td>28366177</td>
<td>0720639788</td>
<td>0724990373</td>
</tr>
<tr>
<td>12</td>
<td>Ledi Mokiri</td>
<td>12651977</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>13</td>
<td>Stanley Oke Kiliy</td>
<td>39297903</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>14</td>
<td>Tirenze Mokiri</td>
<td></td>
<td></td>
<td>0724990373</td>
</tr>
<tr>
<td>15</td>
<td>Kelvin Batura</td>
<td>38392722</td>
<td>0720134954</td>
<td>0721625016</td>
</tr>
<tr>
<td>16</td>
<td>Joseph Muga</td>
<td>26641037</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>17</td>
<td>Livingstone Njiru</td>
<td>26820230</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>18</td>
<td>Jackson Ukari</td>
<td>25291375</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>19</td>
<td>Joseph Sango</td>
<td>27538456</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>20</td>
<td>Jackson Ikangia</td>
<td>21150478</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>21</td>
<td>Reu Richard Mungai</td>
<td>1408587</td>
<td>0722610095</td>
<td>0721625016</td>
</tr>
<tr>
<td>22</td>
<td>David Nasuka</td>
<td>11177977</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>23</td>
<td>Stephen Konai</td>
<td>9742068</td>
<td>0721625016</td>
<td>0724990373</td>
</tr>
<tr>
<td>24</td>
<td>Selseven Mokiri</td>
<td>22345795</td>
<td>0724990373</td>
<td>0724990373</td>
</tr>
<tr>
<td>25</td>
<td>Isaac Kari</td>
<td>221867257</td>
<td>0724906909</td>
<td>0721625016</td>
</tr>
<tr>
<td>26</td>
<td>Jackson Arap Mungai</td>
<td>22746165</td>
<td>0724906909</td>
<td>0721625016</td>
</tr>
<tr>
<td>27</td>
<td>N. K. Njotiek</td>
<td>108432086</td>
<td>0720490634</td>
<td>0721625016</td>
</tr>
<tr>
<td>28</td>
<td>S. C. Njotiek</td>
<td>108432086</td>
<td>0720490634</td>
<td>0721625016</td>
</tr>
<tr>
<td>29</td>
<td>Leonard Simbene</td>
<td>14137486</td>
<td>0720308442</td>
<td>0721625016</td>
</tr>
</tbody>
</table>